
Chapter 1: Concept of data Structures

Page | 1

Introduction:

Data Types:
• A data type in programming, is a classification that specifies which type of value a

variable has and what type of mathematical, relational or logical operations can be

applied to it.

• A data type is the collection of values and a set of operations on the values.

• For example:

o A string is a data type that is used to classify text.

o An integer is a data type that is used to classify whole numbers.

Data types Examples
Integer 1,3,15,67…

String Hello world, ram, sita…

Float 3.14, 6.78…

Data Structure:
• A data structure is a systematic way of organizing data in a computer so that it can be used

effectively.

• Data structure is a way of collecting and organizing data in such a way that we can perform

operations on these data in an effective way.

• Data structure is about rendering data elements in terms of some relationship, for better

organization and storage.

• Data structure is classified into the following two categories

o Primitive Data Structure: They are basic structure and are directly operated by machine

instructions.

o Non-Primitive Data Structure: These are more sophisticated data structure and are

derived from primitive data structure. The non-primitive data structure emphasis on

structuring of group of homogeneous and heterogeneous data items.

Chapter 1: Concept of data Structures

Page | 2

• Data Structure = Organized Data + Allowed Operations

• Commonly used operations are Searching, Inserting, Deleting, Sorting etc.

• Example

o An array is a data structure for storing more than one data item that has a similar data

type. The items of an array are allocated at adjacent memory locations.

o Following are the operations supported by an array.

▪ Traverse: Print all the array elements one by an array.

▪ Insertion: Adds an element at the given index.

▪ Deletion: Deletes an element at the given index.

▪ Search: Searches an element using the given index or by the value.

▪ Update: Updates an element at the given index.

Abstract Data Type (ADT)
• A useful tool for specifying the logical properties of a datatype is called Abstract Data

Type (ADT).

• ADT’s specification describes what data can be stored (the characteristics of ADT) and

how it can be used (the operations) but not how it is implemented or represented in the

program.

• ADT is a type for objects whose behavior is defined by a set of values and a set of

operations.

• An abstract data type is defined as a mathematical model of the data objects that make

up a data type as well as the functions that operate on these objects.

• It does not specify how data will be organized in memory and what algorithms will be

used for implementing the operations.

Abstract Data Type (ADT)

Data

Properties

Operations

Chapter 1: Concept of data Structures

Page | 3

Specification of ADT:

Specification of any ADT consists of two parts:

1. value definition:

o Here, we specify the set of possible values taken by the ADT along with some

conditions or constraints with which the ADT bounds.
o It contains definition clause and condition clause.

2. operator definition:

o Here, various operations which are imposed on ADT are defined. This part

contains 3 sections viz. a header, the preconditions (which is optional) and

the postconditions. The term ‘abstract’ in the header indicates that this is not

a C function; rather it is an ADT operator definition. This term also indicates

that the role of an ADT is a purely logical definition of a new data type.

The following listing gives the ADT for rational numbers. The value definition here indicates the

constraints on rational number. The operator definition parts contain the definition for various

operations like creation of rational number, addition and multiplication of rational numbers and

for checking the equality of two rational numbers.

Chapter 1: Concept of data Structures

Page | 4

Algorithms
An algorithm is a set of rules for carrying out calculations either by hand or machine. An

algorithm is a sequence of computational steps that transform the input into the output. An

algorithm performed on data that have to be organized in data structure. An algorithm is an

abstraction of a program to execution on a physical machine.

Algorithm Design:

An algorithm design is a specific method to create a mathematical process in solving problem.

Steps for developing algorithm:

1. Problem definition

2. Specification of algorithm

3. Design an algorithm

4. Checking the correctness of algorithm

5. Analysis of algorithm

6. Implementation of algorithm

7. Problem Testing

8. Documentation

Algorithm Efficiency:

How fast is algorithm?

How much money does it cost?

Chapter 2. Stack and Queue

P a g e 1 | 14

Stack:
 Stack is an ordered collection of data in which insertion and deletion operation is

performed at only one end called the Top of the Stack (TOS).

 The element last inserted will be the first to be deleted. Hence, stack is known as Last in

First out (LIFO) structure.

 Stack Operations:

o Push: It is used to add an item in the stack. If the stack is full, then it is said to be

overflow condition.

o Pop: It is used to remove an item from the stack. The items are popped in the

reversed order in which they are pushed. If the stack is empty, then it is said to

be an Underflow condition.

 Initial value of top is -1 i.e., top = -1

 Example: Stack Operations for the size of stack 3

Operations:

 Top=top -1;

 }

Chapter 2. Stack and Queue

P a g e 2 | 14

Algorithm for Push and Pop Operation:

Push:

1. Start

2. If(top=size-1) // Check for stack overflow

Print” Stack is full”

3. Otherwise,

i. Increase top by 1

ii. Read data and store at top position

4. Stop

Pop:

1. Start

2. If(top=-1) //Check for stack Underflow

Print” Stack is empty”

Otherwise,

Decrease top by 1

3. Stop

Chapter 2. Stack and Queue

P a g e 3 | 14

Stack Application: Evaluation of infix, postfix and prefix expressions
 An expression is defined as number of operands or data items combined with several

operators.

 Three types of notations for an expression:

o Infix notation:

 An expression where operators are used in-between operands. e.g., A+B

 It is easy for us human to read, write, and speak in infix notation but the

same does not go well with computing devices.

o Prefix Notation:

 An expression where the operator is written ahead of operands. e.g., +AB

o Postfix Notation:

 An expression where the operator is written after the operands. e.g., AB+

 Operator and their precedence level:

o Operator precedence determines which operator is performed first in an

expression with more than one operator with different precedence.

Operator Precedence Value Associativity

Exponentiation ($, ^) Highest 3 Right to left

*, /, % Next highest 2 Left to Right

+, - Lowest 1 Left to Right

Note: [{()}] will be evaluated first.

Chapter 2. Stack and Queue

P a g e 4 | 14

Algorithm to convert infix to postfix:
1. Let Infix be a string that stores infix expression and Postfix be a string that stores the

postfix result.

Scan the Infix Expression character from left to right.

1. Start

2. If character is operand

Append it to postfix

3. If character is operator

i. If stack is empty OR stack’s top is ‘(‘ OR precedence of character >

precedence of stack’s top

Push character to the stack

ii. Else

While stack’s top is operator AND precedence of stack’s top >=

precedence of character

Append the operator from stack to Postfix and pop it from stack

Push character to the stack

4. If character is’(‘

Push character to the stack.

5. If character is ’)’

Append the operator from stack to postfix and pop if from stack until stack’s

top is ‘(‘

Pop ‘(‘from stack

6. Repeat 2 to 5 until infix expression is scanned.

7. Append the operator from stack to postfix and pop it from stack until stack is empty.

8. stop

Example 1: Infix Expression: (A +B) *C

Chapter 2. Stack and Queue

P a g e 5 | 14

Scanned Character Stack Postfix

((

A (A

+ (+ A

B (+ AB

) AB+

* * AB+

C * AB+C

 AB+C*

Postfix: AB+C*

Example 2: Infix Expression: 𝑨 + 𝑩 − (𝑪 ∗ 𝑫/𝑬 + 𝑭) − 𝑮 ∗ 𝑯 [2073 Bhadra]

Scanned Character Stack Postfix

A A

+ + A

B + AB

- - AB+

(-(AB+

C -(AB+C

* -(* AB+C

D -(* AB+CD

 / -(/ AB+CD*

E -(/ AB+CD*E

+ -(+ AB+CD*E/

F -(+ AB+CD*E/F

) - AB+CD*E/F+

- - AB+CD*E/F+-

G - AB+CD*E/F+-G

* -* AB+CD*E/F+-G

H -* AB+CD*E/F+-GH

 AB+CD*E/F+-GH*-

Chapter 2. Stack and Queue

P a g e 6 | 14

Q. A + B − C ∗ (D − E + F/G)/H

Q. A ∗ B/C − D + (E/F ∗ G)/(K − L)

Chapter 2. Stack and Queue

P a g e 7 | 14

Algorithm to convert Infix to Prefix:
1. Reverse the infix expression

2. Obtain the “nearly” postfix expression of the modified expression (If Associativity is Left

to Right Then Push)

3. Reverse the postfix expression

Example 1: Infix expression: (A +B) *C

2. Reversing the infix expression

C * (B+A)

3. Converting modified expression to postfix expression

Scanned Character Stack Postfix

C C

* * C

(*(C

B *(CB

+ *(+ CB

A *(+ CBA

) * CBA+

 CBA+*

Postfix: CBA+*

4. Reversing the postfix expression

*+ABC

Algorithm to evaluate the postfix expression:
1. Start

2. If character is number

Push on the stack

3. If character is operator(op)

a. Val1=pop

b. Val2=pop

c. Perform result=val2 op val1

d. Push the result into stack

4. Repeat 2 to 3 until postfix expression is scanned.

5. Output the result

6. Stop

Chapter 2. Stack and Queue

P a g e 8 | 14

Example 1: AB+C*

Let A=1, B=2 and C=3

 1+2 3*3

Ans: 9

Example 2: ABC*DEF^/G*-H*+

Let A= 2, B= 3, C=9, D=8, E=1, F=4, G= 2, H=7

1

2

1

3

3

3

9

2

3

2

9

3

2

27

2

8

27

2

1

8

27

2

4

1

8

27

2

1

8

27

2

Chapter 2. Stack and Queue

P a g e 9 | 14

Ans: 79

11

2

77

2

79

8

27

2

2

8

27

2

16

27

2

7

11

2

Chapter 2. Stack and Queue

P a g e 10 | 14

Queue:
 A queue is an ordered collections of items from which items may be deleted at one end

called the front of the queue and in to which items may be inserted at the other end

called rear of the queue.

 It follows FIFO policy.

 Queue operations:

o Enqueue: It adds an item to the queue. If the queue is full, then it is said to be an

overflow condition.

o Dequeue: It removes an item from the queue. The items are removed in the

same order in which they are added. If the queue is empty, then it is said to be

an Underflow condition.

Deletion [0] [1] [2] [3] [4] Insertion

 Front rear

Linear Queue:
 A linear queue is a linear data structure that serves the request first, which has been

arrived first. It consists of data elements which are connected in a linear fashion.

 Initial condition:

Front=0 and Rear=-1

 Algorithm for Insertion:

1. Start

2. If (rear = = MaxSize -1)

Printf(“queue overflow”);

3. Else

If (front = = -1)

Front = 0;

Rear = rear + 1;

Queue [rear] =item;

4. Stop

Chapter 2. Stack and Queue

P a g e 11 | 14

 Algorithm for Deletion:

1. Start

2. If (front = = -1)|| (front >rear)

 Printf (“Queue under flow”);

 Return;

3. Else

 Printf (“Element deleted from queue is: %d”, queue [front]);

 front = front +1;

4. Stop

Example:

Chapter 2. Stack and Queue

P a g e 12 | 14

Circular Queue:
 A circular queue is one in which the insertion of new element is done at the very first

location of the queue if the last location of the queue is full.

 It connects the last position of the queue to the first position of the queue.

 Initial Condition:

Front=-1 and rear =-1

 Algorithm for Insertion:

1. Start

2. if((front == 0 && rear == MAX-1) || (front == rear+1))

Print "Queue Overflow” and return

3. otherwise

i. if(front == -1)

Set front = 0 and rear = 0

ii. otherwise

Increase rear as, rear = (rear + 1) % MAX

4. Insert the item rear position cqueue[rear] = item

5. Stop

 Algorithm for Deletion:
1. Start

2. if(front == -1)

Print "Queue Underflow” and return

3. otherwise
4. Element deleted from queue is cqueue[front]

i. if(front == rear)

Set front = -1 and rear = -1

ii. otherwise

Increase front as, front = (front + 1) % MAX

5. Stop

Chapter 2. Stack and Queue

P a g e 13 | 14

Example:

Priority Queue:
 Priority queue is an extension of queue with following properties:

o Every item has a priority associated with it.

o An element with higher priority is de-queued before an element with lower

priority.

o Two elements have the same priority, they are served according to their order in

the queue.

 Ascending Priority queue:

o An ascending priority queue is a collection of items into which items can be

inserted arbitrarily and from which only the smallest items can be removed.

o Lower priority number has higher priority.

o For example: A queue may be viewed as ascending priority queue whose

elements are ordered by the time of insertion. 0 has high priority

 Item Priority

25

80

26

42

86

0

5

2

1

2

42 1 26 2 25 0

86 2 80 5

Start

Chapter 2. Stack and Queue

P a g e 14 | 14

 Descending Priority Queue:

o A descending priority queue is similar but allows deletion of only the largest

items.

o Higher priority number to high priority

o For example: A stack may be viewed as descending priority queue whose

elements are ordered by the time of insertion. The element that was inserted

last has the greatest insertion –time value and is the only that can be retrieved.

 Item Priority

2.

Application of Priority Queue:

 It is used in data compression techniques like Huffman code.

 Priority queues are used to select the next process to run.

 It is used in bandwidth management to prioritize the important data packet.

 Used in algorithms like Dijkstra’s shortest path algorithm, heap sort algorithm, etc.

25

80

26

42

86

0

5

2

1

2

80 5 26 2 86 2 42 1 25 0

Start

Chapter 3 List

P a g e 1 | 7

Definition
 List means collection of elements in sequential order to which addition & deletion can

be made.

 The first element of a list is called the head of list & the last is called the tail of the list.

 The next element of the head of the list is called its successor. The previous element to

the tail (if it is not head of the list) is called its predecessor. Clearly a head doesn’t have

as predecessor & a tail doesn’t have a successor. Any other element of the list has both

one successor & one predecessor.

Successor predecessor

 Head Tail

Operations perform in list:-
1. Traversing an array list

2. Searching an element in the list

3. Insertion of an element in the list

4. Deletion of an element in the list.

 In memory we can store the list in two ways:

 One way to store the elements at sequential memory location. This implementation is

called static implementation and is done using array.

 The other way is we can use pointers or links to attach the elements sequentially. This is

called dynamic implementation.

10 20 60 30 50

Chapter 3 List

P a g e 2 | 7

Storing a list in a static data structure:
 This implementation stores the list in an array.

 The position of each element is given by an index from 0 to n-1, where n is the

number of elements.

 Given any index, the element with that index can be accessed in constant time –

i.e. the time to access does not depend on the size of the list.

 To add an element at the end of the list, the time taken does not depend on the

size of the list. However, the time taken to add an element at any other point in

the list does depend on the size of the list, as all subsequent elements must be

shifted up. Additions near the start of the list take longer than additions near the

middle or end.

 When an element is removed, subsequent elements must be shifted down, so

removals near the start of the list take longer than removals near the middle or

end.

Lists Implementation

Static Implementation

(Using Array)

Dynamic Implementation

(Using linked list)

Chapter 3 List

P a g e 3 | 7

Storing a list in a dynamic data structure (Linked List):
 The Link List is stored as a sequence of linked nodes. As in the case of the stack and the

queue, each node in a linked list contains data and a reference to the next node.

 The list can grow and shrink as needed the position of each element is given by an index

from 0 to n-1, where n is the number of elements.

 Given any index, the time taken to access an element with that index depends on the

index. This is because each element of the list must be traversed until the required index

is found.

 The time taken to add an element at any point in the list does not depend on the size of

the list, as no shifts are required. It does, however, depend on the index. Additions near

the end of the list take longer than additions near the middle or start. The same applies

to the time taken to remove an element.

 The first node is accessed using the name LinkedList.Head

 Its data is accessed using LinkedList.Head.DataItem

Static Data Structure vs Dynamic Data Structure:

 Static Data structure has fixed memory size whereas in Dynamic Data Structure, the size

can be randomly updated during run time which may be considered efficient with

respect to memory complexity of the code. Static Data Structure provides easier access

to elements with respect to dynamic data structure. Unlike static data structures,

dynamic data structures are flexible.

Chapter 3 List

P a g e 4 | 7

Array Implementation of List:
 This implementation stores the

list in an array.

Insertion:

 Input the array elements, the position of the new element to be inserted and the new
element.

 Insert the new element at that position and shift the rest of the elements to right by one
position.

Algorithm

1. Get the element value which needs to be inserted.

2. Get the position value.

3. Check whether the position value is valid or not.

4. If it is valid,

Shift all the elements from the last index to position index by 1 position to the right.

 insert the new element in arr[position]

5. Otherwise,

 Invalid Position

Example1:

Let's take an array of 5 integers.

1, 20, 5, 78, 30.

If we need to insert an element 100 at position 2, the execution will be,

Chapter 3 List

P a g e 5 | 7

Deletion

 Input the array elements, the position of the element to be deleted and the element.

 Delete the element and shift the rest of the elements to left by one position.

Algorithm

1. Find the given element in the given array and note the index.

2. If the element found,

 Shift all the elements from index + 1 by 1 position to the left.

 Reduce the array size by 1.

3. Otherwise, print "Element Not Found"

Example1:

Let's take an array of 5 elements.

1, 20, 5, 78, 30.

If we remove element 20 from the array, the execution will be,

Chapter 3 List

P a g e 6 | 7

Queue as list:

We will maintain two pointers - tail and head to represent a queue. head will

always point to the oldest element which was added and tail will point where the

new element is going to be added. Setting Q.tail = -1 and Q.head = -1

Insertion:

if ((Q.head=Q.tail+1)|| (Q.tail = Q.size-1 && Q.head =0))

 Error “Queue Overflow”

Else

 if (Q.head ==-1)

 set Q.tail = 0 and Q.head = 0

 else

 Q.tail = (Q.tail+1) % size

 Q[Q.tail] = x

Chapter 3 List

P a g e 7 | 7

Deletion:

 if Q.head == -1

 Error “Queue Underflow”

 else

 x = Q[Q.head]

 if Q.head == Q.tail

 set Q.head = -1 and Q.tail = -1

 else

 Q.head = (Q.head+1) % size

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Introduction:
 A linked list is a collection of elements called ‘nodes’ where each node consists of two

parts:

o Info: Actual element to be stored in the list. It is called data field.

o Next: one or more link that points to next and previous node in the list. It is also

called pointer field.

 The link list is a dynamic structure i.e. it grows or shrinks depending on different

operations performed. The whole list is pointed to by an external pointer called head

which contains the address of the first node. It is not the part of linked list.

 The last node has some specified value called NULL as next address which means the

end of the list.

Types of Linked List:

1. Single linked list:
 It is the simplest type of linked list in which every node contains some data and a

pointer to the next node of the same data type. The node contains a pointer to

the next node means that the node stores the address of the next node in the

sequence. A single linked list allows traversal of data only in one way.

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

2. Doubly Linked list:
 A doubly linked list or a two-way linked list is a more complex type of linked list

which contains a pointer to the next as well as the previous node in sequence,

Therefore, it contains three parts are data, a pointer to the next node, and a

pointer to the previous node. This would enable us to traverse the list in the

backward direction as well.

3. Circular linked list:
 A circular linked list is that in which the last node contains the pointer to the first

node of the list. While traversing a circular liked list, we can begin at any node

and traverse the list in any direction forward and backward until we reach the

same node we started. Thus, a circular linked list has no beginning and no end.

4. Doubly Circular Linked List:
 A Doubly Circular linked list or a circular two-way linked list is a more complex

type of linked-list that contains a pointer to the next as well as the previous node

in the sequence. The circular doubly linked list does not contain null in the

previous field of the first node.

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Dynamic implementation:
Dynamic Memory Allocation: it is a procedure in which the size of data structure is changed during the

runtime.

Malloc ():

It is used to dynamically allocate a single large block of memory with the specified size.

It returns a pointer of type void which can be cast into a pointer of any form. It doesn’t

Initializes memory at execution time so that it has initializes each block with the default

garbage value initially.

ptr = (cast-type*) malloc(byte-size)

e.g. ptr= (int*) malloc(100*size of (int));

Calloc ():

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the

specified number of blocks of memory of the specified type. It initializes each block with a

default value ‘0’ and has two parameters.

ptr = (cast-type*)calloc(n, element-size);

here, n is the no. of elements and element-size is the size of each element.

Free ():

It is used to dynamically de-allocate the memory. The memory allocated using functions

malloc () and calloc() is not de-allocated on their own. Hence the free() method is used,

whenever the dynamic memory allocation takes place. It helps to reduce wastage of

memory by freeing it.

Free (ptr);

Representation in C:

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

For getnode ():

 Let getnode() be a function that allocates memory for a node, assigns data to the

node’s info, makes node’s next pointer NULL and returns the address of the node.

 It allocates the memory for a node dynamically. It is a user defined function that

returns a pointer to newly created node.

Operations in Single linked list:

Insertion:
The insertion into a singly linked list can be performed at different positions.

1. Insertion at beginning:
It involves inserting any element at the front of the list. We just need make the new node as the

head of the list.

Algorithm:

1. Create a node using malloc function

2. Assign data to info field of new node

3. if head is NULL then set head=newnode and exit

4. otherwise

i. Set next of newnode to head

ii. Set the head pointer to point to the new node

5. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

2. Insertion at end of the list:

It involves insertion at the last of the linked list. The new node can be inserted as the

only node in the list or it can be inserted as the last one.

Algorithm:

1. Create a node using malloc function

2. Assign data to info field of new node

3. Set next of newnode to NULL

4. if head is NULL then set head=newnode and exit

5. Otherwise

i. Set

ii. Find the last node

iii. Set ptr->next =newnode

6. end

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

3. Insertion at specified position:

It involves insertion at specified position of the linked list. We need to skip the desired

number of nodes in order to reach the node at which the new node will be inserted.

1. Create a node using malloc function

2. Assign data to info field of new node

3. Enter the position of a node at which you want to insert a newnode.

4. Let the position be pos

5. Set

6. Set

7. Set next of ptr to point to the newnode

8. End

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Deletion:

1. Deletion at beginning:

It involves deletion of a node from the beginning of the list.

Let head be the pointer to the first node in the linked list

1. If (head==NULL) then print void deletion and exit i.e.

2. Otherwise store the address of the first node in temporary variable ptr

3. Set head of the next node to head

4. Free the memory reserved by temp variable

5. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

2. Deletion at the end of the list:

It involves deleting the last node of the list.

1. If (head==NULL) then print void deletion and exit i.e.

2. Otherwise if (head->next==NULL) then set ptr=head, head=NULL and free ptr. i.e.

3. Otherwise

4. End

Temp

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

3. Deletion of specified node:

It involves deletion of the specified node in the list. We need to skip the desired number

of nodes to reach the node which will be deleted.

1. If head=NULL print empty list and exit i.e.

2. Otherwise

i. Enter the position pos of the node to be deleted

ii. If pos=0

i. Set ptr=head and head=head->next and free ptr i.e.

iii. Otherwise

i. Set

ii. Set

iii. Free ptr i.e.

3. End

Temp Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Doubly Linked list:
A doubly linked list is one in which all nodes are linked together by multiple number of

links which helps in accessing both the successor node and predecessor node for the given

node position. It is bi-directional traversing. Each node in a doubly linked list has two pointer

fields and one data field. The pointer fields are used to point successor and predecessor node.

Representation in C:

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Operations in linked list:

Insertion:
The insertion into a doubly linked list can be performed at different positions.

1. Insertion at beginning:
It involves inserting any element at the front of the list. We just need to make the new node as

the head of the list.

Algorithm:

1. Create a node using malloc function

2. Assign data to info field of new node

3. Set

4. Set

5. if head is NULL then set head=newnode

6. otherwise

i. Set next of newnode to head

ii. Set prev of head to newnode

iii. Set the head pointer to point to the new node

7. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

2. Insertion at end of the list:

It involves insertion at the last of the linked list. The new node can be inserted as the

only node in the list or it can be inserted as the last one.

Algorithm:

1. Create a node using malloc function

2. Assign data to info field of new node

3. Set prev of newnode to NULL

4. Set next of newnode to NULL

5. if head is NULL then set head=newnode and exit

6. Otherwise

i. Set

ii. Find the last node

iii. Set ptr->next =newnode

iv. Set

7. End

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

3. Insertion at specified position:

It involves insertion at specified position of the linked list. We need to skip the desired

number of nodes in order to reach the node at which the new node will be inserted.

1. Create a node using malloc function

2. Assign data to info field of new node

3. Set prev of newnode to NULL

4. Set next of newnode to NULL

5. Enter the position of a node at which you want to insert a newnode.

6. Let the position be pos

7. Set

8. Set

9. Set

10. Set

11. Set

12. End

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Deletion:

1. Deletion at beginning:

It involves deletion of a node from the beginning of the list.

Let head be the pointer to the first node in the linked list

1. If (head==NULL) then print void deletion and exit i.e.

2. Otherwise store the address of the first node in temporary variable ptr

3. Set head of the next node to head

4. Set

5. Free the memory reserved by temp variable

6. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

2. Deletion at the end of the list:

It involves deleting the last node of the list.

1. If (head==NULL) then print void deletion and exit i.e.

2. Otherwise if (head->next==NULL) then set ptr=head, head=NULL and free

ptr. i.e.

3. Otherwise

4. End

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

4. Deletion of specified node:

It involves deletion of the specified node in the list. We need to skip the desired number

of nodes to reach the node which will be deleted.

1. If head=NULL print empty list and exit i.e.

2. Otherwise

3. Enter the position pos of the node to be deleted

4. If pos=0

5. Otherwise

i. Set

ii. Set

iii. Set

iv. Free ptr i.e.

6. End

Ptr

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Advantages of Doubly linked list:

 Reversing the doubly linked list is very easy.

 The traversal of this doubly linked list is bidirectional which is not possible in a singly

linked list.

 Deletion of nodes is easy as compared to a Singly Linked List. A singly linked list deletion

requires a pointer to the node and previous node to be deleted but in the doubly linked

list, it only required the pointer which is to be deleted.

Disadvantages of Doubly linked list:

 It uses extra memory when compared to the array and singly linked list.

 Since elements in memory are stored randomly, therefore the elements are accessed

sequentially no direct access is allowed.

Linked stacks and queues

A stack can be easily implemented through the linked list. In stack Implementation, a stack

contains a top pointer. Which is “head” of the stack where pushing and popping items happens

at the head of the list. Each node contains a pointer to its immediate successor node in the

stack.

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Push Operation:

It is similar to the insertion at the beginning of the link list. It involves inserting any element at

the beginning of the list.

1. Create a node using malloc function

2. Assign data to info field of new node

3. Set

4. if top == NULL then set head=newnode and exit

5. otherwise

i. Set next of newnode to top

ii. Set the top pointer to point to the new node

6. Print item pushed

7. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Pop Operation:

It is similar to the deletion from the beginning of the link list. It involves deletion of a

node from the beginning of the list.

Let top be the pointer to the first node in the linked list

1. If (top==NULL) then print void deletion and exit i.e.

2. Otherwise

i. store the address of the first node in temporary variable ptr

ii. Set top of the next node to top

iii. Free the memory reserved by temp variable

3. End

Linked list as Queue:

 Each node of the queue consists of two parts i.e. data part and the link part. Each element of

the queue points to its immediate next element in the memory. In the linked queue, there are

two pointers maintained in the memory i.e. front pointer and rear pointer. The front pointer

contains the address of the starting element of the queue while the rear pointer contains the

address of the last element of the queue.

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Enqueue Operation:

The insert operation append the queue by adding an element to the end of the queue.

The new element will be the last element of the queue.

1. Allocate the memory for the new node

2. Assign data to info field of new node

3. If front=NULL then

i. Set

ii. Set

4. Otherwise

i. Set

5. End

Dequeue Operation:

Deletion operation removes the element that is first inserted among all the queue elements.

Firstly, we need to check either the list is empty or not.

1. If front=NULL

i. Print underflow and exit i.e.

2. Otherwise

3. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Adding two polynomials using Linked List:
In the Polynomial linked list, the coefficients and exponents of the polynomial are defined as the

data node of the list.

For adding two polynomials that are stored as a linked list. We need to add the coefficients of variables

with the same power. In a linked list node contains 3 members, coefficient value link to the next node.

We check values at the exponent value of the node. For the same values of exponent, we will add the

coefficients.

A linked list that is used to store Polynomial looks like −

Polynomial: 4x7 + 12x2 + 45

We start with the term which is of highest degree in any of the polynomials. If there is no item having

same exponent, we simply append the term to the new list, and continue with the process. Wherever

we find that the exponent match, we simply add the coefficients and then store the term in the new list.

If one list gets exhausted earlier and the other list still contains some lower order terms than simply

append the remaining terms to the new list.

Example:

Input:

p1= 13x8 + 7x5 + 32x2 + 54

p2= 3x12 + 17x5 + 3x3 + 98

Output:

P3= 3x12 + 13x8 + 24x5 + 3x3 + 32x2 + 152

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Algorithm:

 Let phead1, phead2 and phead3 represent the pointer of the three lists under consideration. We want
to add phead1 and phead2, and store the result in phead3. This addition can be performed using the
procedure below.

p1=phead1; p2=phead2; p3=phead3;

1. If both the polynomials are null then return
2. else if p1 = Null then

3. Else if p2 = Null then

4. Else
a. case 1

b. case 2

c. Case 3

5. End

Chapter 4 Linked list

[Prepared by: Shankar Bhandari] [Sagarmatha Engineering College] [IOE]

Circular linked list

It is a linked list where all nodes are connected to form a circle. There is no NULL at the end. A circular
linked list can be a singly circular linked list or doubly circular linked list.

Advantages of Circular Linked Lists:

1. Any node can be a starting point. We can traverse the whole list by starting from any point. We
just need to stop when the first visited node is visited again.

2. Useful for implementation of queue.
3. Circular linked list are useful in applications to repeatedly go around the list like CPU scheduling.

Operations:

Insertion:

At the beginning:

1. Create a node using malloc function

2. Assign data to info field of new node

3. If list is empty i.e.

4. Otherwise

5. End

CHAPTER 5 RECURSION

 The process in which a function calls itself directly or indirectly is called recursion and

the corresponding function is called as recursive function. Recursion is used to solve problems

involving iterations in reverse order. It solves a problem by reducing it to an instance of the

same problem with smaller input. Recursion is an alternative to each iteration in making a

function executes repeatedly.

Properties of Recursion:

A recursive function can go infinite liked a loop, to avoid infinite running of recursive function.

There are two properties that a recursive function must have:

1. Base Criteria: There must be at least one base criteria or conditions such that when this

condition is met the function stops calling itself recursively.

2. Progressive Call: The recursive calls should progress in such a way that each time a

recursion call is made, it comes closer to the base case.

The classic example of recursive programming involves computing factorials. The factorial of

a number is computed as that number times all of the numbers below it up to and including 1.

Recursion Tree for fact (5)

5!
=5*4!
=5*4*3!
=5*4*3*2!
=5*4*3*2*1!
=5*4*3*2*1*0!
=5*4*3*2*1
=5*4*3*2
=5*4*6
=5*24
=120
 Fact (5)

Fact (4)

Fact (3)

Fact (2)

Fact (1)

Fact (0)

5

4

3

2

1

CHAPTER 5 RECURSION

Difference between Iteration and Recursive function:

Iteration Recursion

 It is a process of executing statements
repeatedly, until some specific
condition is specified

 Recursion is a technique of defining
anything in terms of itself

 Iteration involves four clear cut steps,
initialization, condition, execution and
updating

 There must be an base condition
inside the recursive function
specifying stopping condition

 The value of control variable moves
towards the value in condition

 The function state converges towards
the base case

 Any recursive problem can be solved
iteratively

 Not all problems has recursive
solution

 Iteration code tends to be bigger in
size

 Recursion decrease the size of code

 An iteration does not use the stack so
it's faster than recursion.

 It is usually much slower because all
function calls must be stored in a
stack to allow the return back to the
caller functions.

 Iteration consumes less memory.  Recursion uses more memory than
iteration.

 E.g.  E.g.

CHAPTER 5 RECURSION

Recursive Program Using Stack:

Recursive functions use something called “the call stack.” When a program calls a

function, that function goes on top of the call stack.

Stack is used to keep the successive generations of local variables, the parameters and the

returned values. This stack is maintained by the C system and lies inside and invisible to the

users.

Each time that a recursive function is entered, a new allocation of its variables is pushed on top

of the stack. Any reference to a local variables or parameter is through the current top of the

stack. When the function returns, the stack is popped, the top allocation is freed, and the

previous allocation becomes the current stack top to be used for referencing local variables.

Figure below shows a snapshots of the stack as execution of the fact function proceeds.

2
3
4

2
3

3
4

3

4

2
3
4

1
2
3

1

1
2
3
4

0
1
2
3

1

0
1
2
3
4

0
1
2
3

1
2
3
4

1
2
3

3
4

2
3

2

4

3

6

i ii

 i

iii

 ii

 i

 i

iv

 ii

 i

 i

v

 ii

 i

 i

vi

 ii

 i

 i

vii

 ii

 i

 i

viii

 ii

 i

 i

ix

 ii

 i

 i

x

 ii

 i

 i

xi

 ii

 i

 i

n x y

CHAPTER 5 RECURSION

Box Trace: It helps to understand how a recursive call works.

 Label each recursive call in the body of the recursive method.

 Represent each call to the method by a new box in which you note the method’s local

environment.

 Draw an arrow from the statement that initiates the recursive process to the first box.

 After you create the new box and arrow, start executing them body of the method.

CHAPTER 5 RECURSION

Time Complexity: we try to figure out the number of times a recursive call is being made. If n

number of times a recursive call is made then the time complexity of recursive function is Ο (2n)

while iterative function is O (n).

Space Complexity: Space complexity is counted as what amount of extra space is required for a

module to execute. In iterations, the compiler hardly requires any extra space. The compiler

keeps updating the values of variables used in and space complexity is O (1). But in recursion,

the system needs to store activation record each time a recursive call is made and space

complexity is O (n).

Recursion Tree:

 Recursion tree is another method for solving the recurrence relations.

 A recursion tree is a tree where each node represents the cost of a certain recursive

sub-problem.

 We sum up the values in each node to get the cost of the entire algorithm.

Types of Recursive Functions:

A recursive method is characterized based on:

 Whether the method calls itself or not (direct or indirect recursion)

 Whether there are pending operations at each recursive call (tail recursive or not)

Direct and Indirect Recursion:

Direct Recursion:

If a function calls itself, it’s known as direct recursion. A function f1 is called direct recursive if it

calls the same function say f1. E.g.

CHAPTER 5 RECURSION

Indirect Recursion:

When a function is mutually called by another function in a circular manner, the function is

called an indirect recursion function. If the function f1 calls another function f2 and f2 calls f1

then it is indirect recursion (or mutual recursion). E.g.

Tail and Non-Tail Recursion:

Tail Recursion:

A recursive function is called the tail-recursive if the function makes recursive calling itself, and

that recursive call is the last statement executes by the function. After that, there is no function

or statement is left to call the recursive function.

Non-Tail / Head Recursion:

A function is called the non-tail or head recursive if a function makes a recursive call itself, the

recursive call will be the first statement in the function. It means there should be no statement

or operation is called before the recursive calls.

CHAPTER 5 RECURSION

Fibonacci Series:

Fibonacci series is a series of numbers formed by the addition of the preceding two numbers in

the series. The first two terms are zero and one respectively. The terms after this are generated

by simply adding the previous two terms.

Iteration

Recursion

Tree diagram for fibo (5)

Fibo (5)

Fibo (3)

Fibo (1)

Fibo (0)

Fibo (4)

Fibo (2)

Fibo (1)

Fibo (3) Fibo (2)

Fibo (1) Fibo (0) Fibo (2) Fibo (1)

Fibo (1) Fibo (0)

CHAPTER 5 RECURSION

Tower of Hanoi (TOH)

It is also called the problem of Benares Temple or Tower of Brahma or Lucas' Tower. The TOH

puzzle was introduced to the west by the French mathematician Edouard Lucas in 1883.

Numerous myths regarding the puzzle popped up almost immediately, including one about an

Indian temple in Kashi Vishwanath containing a large room with three time-worn posts in it,

surrounded by 64 golden disks.

It is a mathematical game or puzzle consisting of three towers (pegs) and a number of disks of

various diameters, which can slide onto any tower.

Rules for TOH:

The objective to move all the disks from the peg A to peg C, using peg B as auxiliary. The rules

to be followed are:

 Only the top disk on any peg may be moved to any other peg.

 Only one disk can be moved among the towers at any given time.

 Larger disk may never rest on a smaller one.

Recurrence Relation for TOH:

Base case : H1 =1 (for one disk)

Recursive case : 𝐻𝑛 = 𝐻𝑛−1 + 1 + 𝐻𝑛−1

 Hn = 2Hn-1 + 1
= 2(2Hn-2 +1) + 1
= 4Hn-2 +2 + 1
= 4(2Hn-3 +1) + 2 + 1

= 2n-1 + 2n-2 + …+ 4 + 2 + 1 [∵ an = ar𝑛−1]
.
.

=2n-1 [∵ 𝑆𝑛 =
𝑎(𝑟𝑛−1)

(𝑟−1)
, 𝑟 ≠ 1]

A

 ii

 i

 i

C

 ii

 i

 i

B

 ii

 i

 i

CHAPTER 5 RECURSION

Algorithm for TOH:

To move n disks from A to C, using B as auxiliary:

1. Declare and initialize necessary variables.

n = number of disks

A=’A’, B=’B’, C=’C’, for three pegs being used.

2. If n == 1,

 Move the single disk from A to C and stop.

3. Otherwise

 Move the top n-1 disks from A to B, using C as auxiliary.

 Move the remaining disk from A to C.

 Move the n-1 disks from B to C, using A as auxiliary.

4. stop

Algorithm for n=3 disks:

1. Move disk 1 from peg A to peg C

2. Move disk 2 from peg A to peg B

3. Move disk 1 from peg C to peg B

4. Move disk 3 from peg A to peg C

5. Move disk 1 from peg B to peg A

6. Move disk 2 from peg B to peg C

7. Move disk 1 from peg A to peg C

Recursion Tree for n=3:

TOH (3, A, C, B)

TOH (2, A, B, C) TOH (2, B, C, A) (A C)

(B C) TOH (1, A, C, B)
TOH (1, B, A, C) TOH (1, A, C, B) (A B)

TOH (1, C, B, A)

(A C)

(C B) (A C) (B A)

CHAPTER 5 RECURSION

TOH (4, A, C, B)

TOH (3, B, C, A)

TOH (2, A, C, B) TOH (1, B, C, A)

TOH (1, A, B, C)

TOH (1, A, C, B)

TOH (2, B, A, C)

TOH (1, C, A, B)

TOH (1, B, A, C)

TOH (1, B, C, A)

TOH (1, B, C, A)

TOH (3, A, B, C)

TOH (2, A, C, B)

TOH (1, B, C, A)

TOH (1, A, C, B)

TOH (1, A, B, C)

TOH (2, C, B, A)

TOH (1, A, B , C)

TOH (1, C, B, A)

TOH (1, C, A, B)

TOH (1, A, B, C)

TOH (1, A, C, B)

Algorithm for n=4 disks:

1. Move disk 1 from peg A to peg B

2. Move disk 2 from peg A to peg C

3. Move disk 1 from peg B to peg C

4. Move disk 3 from peg A to peg B

5. Move disk 1 from peg C to peg A

6. Move disk 2 from peg C to peg B

7. Move disk 1 from peg A to peg B

8. Move disk 4 from peg A to peg C

9. Move disk 1 from peg B to peg C

10. Move disk 2 from peg B to peg A

11. Move disk 1 from peg C to peg A

12. Move disk 3 from peg B to peg C

13. Move disk 1 from peg A to peg B

14. Move disk 2 from peg A to peg C

15. Move disk 1 from peg B to peg C

CHAPTER 5 RECURSION

Applications of Tower of Hanoi:

 It is used in psychological research on problem-solving.

 It is used in physical design of the game components.

 It is used as a backup rotation scheme when performing computer data backups where

multiple tapes/media are involved.

Application of Recursion:

 The most important data structure ‘Tree’ doesn’t exist without recursion we can solve

that in iterative way also but that will be a very tough task.

 The mathematical problem can’t be solved in general, but that can only be solved using

recursion up to a certain extent.

 Sorting algorithms (Quick sort, Merge sort, etc.) uses recursion.

 All the puzzle games (Chess, Candy crush, etc.) broadly uses recursion.

 It is the backbone of searching, which is most important thing.

 This is the backbone of AI.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Definition:

A tree is a nonlinear data structure in which items are arranged in a sorted Sequence, It

is used to represent hierarchical relationship existing among several data items. Each node of a

tree may or may not pointing more than one node.

It is a finite set of one or more data items (nodes) such that there is a special data item called

the root. Its remaining data items are portioned into no. of mutually exclusive subsets, each of

which is itself a tree and they are called subtree.

It represents the nodes connected by edges:

Tree terminology:

Root: - The first node in a hierarchical arrangement of data items is root.

Node: - Each data item in a tree is called a node.

Degree of a node: - It is the no. of subtrees of a node in a given tree from fig. Here,

 Degree of node A = 2

 Degree of node D = 2

 Degree of node F = 0

Degree of a tree: - It is the maximum degree of nodes in a given tree here degree of tree is 2.

Terminal node / Leaf node: - A node with degree 0 is terminal node.

Non terminal node / Parent Node: - Any node except the root whose degree is not zero is call

non terminal node.

Keys: - it represents a value of a node based on which a search operation is to be carried out for

a node

Siblings: - The children nodes of a given parent nodes are called siblings. F and G are siblings of

parent node C & so on.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Edge: - It is a connecting line of two nodes i.e. line drawn from one node to another.

Path: - It is a sequence of consecutive edge from the source node to the destination node.

Traversing: -It means passing through the nodes in certain order.

Level: - The entire tree structure is leveled in such a way that the root rode is always at level

zero. Then its immediate children are at level 1 and there immediate children are at level 2 and

so on up to the terminal nodes. Here, the level of a tree is 3.

Depth or height: - Height of a node represents the number of edges on the longest path

between that node and the leaf node. Depth of a node represents the number of edges from

the tree’s root node to the node. It is the maximum label of any node in a given tree here, the

depth of a tree is 3.

Binary tree:

A binary tree is a finite set of data items which is either empty or consist of a single item called

the root and two disjoint binary trees the left subtree and right subtree. In binary tree the

maximum degree of any node is at most 2 i.e. each node having 0, 1, or 2 degree node.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Strictly Binary tree:

 Strictly binary tree is a tree where every node other than the leaves has the two children

or, all of the nodes in a strictly binary tree are of degree zero or two, never degree one.

 A strictly binary tree with n leaves always contains 2n -1 nodes.

∵ 𝑇ℎ𝑒 𝑛𝑡ℎ 𝑡𝑒𝑟𝑚 𝑜𝑓 𝐴𝑃 𝑖𝑠

= 𝑎 + (𝑛 − 1)𝑑

Almost completely Binary Tree:

 A Binary Tree is almost complete Binary Tree if all levels are completely filled except

possibly the last level and the last level has all keys as left as possible. A binary tree of

depth d is an almost binary tree if:

o Any node ‘nd’ at level less than‘d-1’ has two sons.

o For any node ‘nd’ in the tree with a right descendant at level d, nd must have a

left son and every left descendant of nd is either a leaf at level d or has two sons.

For 1 leaf no. of nodes =1
For 2 leaf no. of nodes =3
For 3 leaf no. of nodes =5
.
.
For n leaf no. of nodes =1+ (n-1)*2
 =2n-1

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

N

RL

+

BA

Complete /Perfect Binary Tree:

 Every node except the leaf nodes have two children and every level (last level too) is
completely filled. If ‘m’ nodes are present at level ‘k’ then there are ‘2m’ nodes at level
‘k+1’. There are 2k nodes at level ‘k’.

 If ‘h’ be the height, then total no. of leaves 2h, and total no. of nodes 2h+1-1

Binary Tree Traversal:

Traversal is a process to visit all the nodes of a tree and may print their values too. Unlike linear

data structures (Array, Linked List, Queues, Stacks, etc.) which have only one logical way to

traverse them, trees can be traversed in different ways. There are two types of traversal.

I. Depth-First Traversal:

Visit nodes in order of increasing depth. It starts with the root node and first visits all

nodes of one branch as deep as possible of the chosen Node and before backtracking, it

visits all other branches in a similar fashion. While traversing a tree root is denoted by ‘N’

left subtree as ‘L’ and right subtree as ‘R’. Following are the generally used ways for

traversing trees.

 In-order Traversal: LNR

1. Traverse the left subtree in Inorder

2. Visit the root.

3. Traverse the right subtree in Inorder

E.g. A + B

Algorithm:

1. ptr=root

2. Inorder (ptr);

3. If (ptr != NULL)

a. Inorder (ptr->left);

b. Print “ ptr->info”;

c. Inorder (ptr->right);

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

 Pre-order Traversal: NLR

1. Visit the root.

2. Traverse the left subtree in Preorder

3. Traverse the right subtree in Preorder

E.g. + AB

Algorithm:

1. ptr=root

2. Preorder (ptr);

3. If (ptr != NULL)

a. Print “ ptr->info”;

b. Preorder (ptr->left);

c. Preorder (ptr->right);

 Post-order Traversal: LRN

1. Traverse the left subtree in Postorder

2. Traverse the right subtree in Postorder

3. Visit the root.

E.g. AB+

Algorithm:

1. ptr=root

2. Postorder (ptr);

3. If (ptr != NULL)

a. Postorder (ptr->left);

b. Postorder (ptr->right);

c. Print “ ptr->info”;

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

F

F

A

A

F

E

A

F

E K

Constructing the tree from preorder and in order traversal:

 In pre order traversal, scan the nodes one by one and keep them inserting in tree.

 In order traversal, put the cross mark over the node which has been inserted.

 To insert a node in its proper position in the tree we look at that node the in order

traversal & insert it according to its position with respect to the crossed nodes:-

Inorder: 𝐸𝐴𝐶𝐾𝐹𝐻𝐷𝐵𝐺 (LNR)

Preorder: 𝐹𝐴𝐸𝐾𝐶𝐷𝐻𝐺𝐵 (NLR)

Insert F

Inorder: EACK𝐅HDBG (LNR)

Preorder: 𝐹𝐴𝐸𝐾𝐶𝐷𝐻𝐺𝐵 (NLR)

Insert A

Insert E

Insert K

Insert C

A

F

E K

C

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

A

F

E K

A

F

E K

A

F

E K

A

F

E K

Insert D

Insert H

Insert G

Insert B

C

D

C

D

H

C

D

H G

C

D

H G

B

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

N

RL

Binary search tree: -

A binary search tree is a node-based binary tree in which each node has value greater than

every node of left sub tree and less than every node of right sub tree which has the following

properties:

 The left subtree of a node contains only nodes with keys lesser than the node’s key.

 The right subtree of a node contains only nodes with keys greater than the node’s key.

 The left and right subtree each must also be a binary search tree.

There must not be duplicate nodes and R > N > L

E.g.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Algorithm for inserting a new node in BST:

Insert function is used to add a new element in a binary search tree at appropriate location.

1. Allocate memory for node

2. Set the data part to the value and set the left and right pointer of node, point to NULL.

3. Assign pointer ‘tree’ as ‘root’ node of the tree.

4. If (tree == NULL)

Set

5. Else if (data < tree -> info)

i. If(tree -> left == NULL) then

ii. else

iii. Repeat step from 4

6. Else if (data > tree -> info)

i. If (tree -> right == NULL) then

ii. Else

iii. Repeat step from 4

7. Else if (data == tree->info)

8. Display “ Duplicate Data”

9. End

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Example 1:

Construct a Binary Search Tree (BST) for the following sequence of numbers-

50, 70, 60, 20, 90, 10, 40, 100

When elements are given in a sequence,

 Always consider the first element as the root node.

 Consider the given elements and insert them in the BST one by one.

Insert: 50

Insert: 70

As 70 > 50, so insert 70 to the right of 50.

 Insert: 60

As 60 > 50, so insert 60 to the right of 50.

As 60 < 70, so insert 60 to the left of 70.

Insert: 20

As 20 < 50, so insert 20 to the left of 50.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert: 90

As 90 > 50, so insert 90 to the right of 50.

As 90 > 70, so insert 90 to the right of 70.

Insert: 10

As 10 < 50, so insert 10 to the left of 50.

As 10 < 20, so insert 10 to the left of 20.

Insert: 40

As 40 < 50, so insert 40 to the left of 50.

As 40 > 20, so insert 40 to the right of 20.

Insert: 100

As 100 > 50, so insert 100 to the right of 50.

As 100 > 70, so insert 100 to the right of 70.

As 100 > 90, so insert 100 to the right of 90.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Deletion:

Delete function is used to delete the specified node from a binary search tree. However, we

must delete a node from a binary search tree in such a way, that the property of binary search

tree doesn't violate. There are three situations of deleting a node from binary search tree.

The node to be deleted is a leaf node:

It is the simplest case, in this case, replace the leaf node with the NULL and simple free the

allocated space.

The node to be deleted has only one child:

In this case, replace the node with its child and delete the child node, which now contains the

value which is to be deleted. Simply replace it with the NULL and free the allocated space.

The node to be deleted has two children:

The node which is to be deleted, is replaced with its in-order successor or predecessor

recursively until the node value (to be deleted) is placed on the leaf of the tree. After the

procedure, replace the node with NULL and free the allocated space.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Algorithm:

For function deletenode (root, info)

1) If (root == NULL)

Item not found in the tree and return NULL

2) if (data < root -> info)

Set root->left = deletenode (root->left, info);

3) else if (data > tree-> info)

Set root->right =deletenode (root->right, info);

4) else

 // for no child

1. if (root-> left == NULL && root -> right == NULL)

i. Set free (root)

ii. Return NULL

// node with one child

2. Else if (root -> left == NULL) then

i. ptr= root -> right

ii. free (root)

iii. return ptr;

3. else if (root -> right == NULL) then

i. ptr = root -> left

ii. free (root)

iii. return ptr

// node with two children
4. Get the Inorder successor (smallest in the right subtree)

i. Ptr= root -> right;
// to find leftmost leaf

ii. While (ptr -> left != NULL)
ptr = ptr -> left;

// copy the Inorder successor’s content to this node
5. root -> info = ptr -> info
6. root -> right = deletenode (root -> right, ptr -> key);

5) Return root and End

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

AVL balanced trees and balancing algorithm:
AVL tree is a self-balancing binary search tree in which the difference of heights of left and right
subtrees of any node is less than or equal to one which is termed as balance factor. The
technique of balancing the height of binary trees was developed by Adelson, Velskii, and Landi
and hence given the short form as AVL tree or Balanced Binary Tree. Every sub-tree is itself an
AVL tree. If the difference is more than one, then the tree is rebalanced by applying certain rule
of rotation.

Balance Factor (BF) = HL − HR

 And for AVL tree, | HL − HR | ≤ 1

If BF is more than 1, the tree is balanced using some rotation techniques.

AVL Rotations:

1. Right-Right Rotation:

 If BF of node is -2 and the BF of the right child id < 0. A single ‘left’ rotation

2. Right-Left rotation:

 If BF of node is -2 and the BF of the right child id > 0 A ‘right rotation followed
by a ‘left’ rotation

3. Left-Left rotation:

 If BF of node is 2 and the BF of the left child id > 0. A single ‘right’ rotation

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

4. Left-Right rotation:

 If BF of node is 2 and the BF of the left child id < 0. A ‘left rotation followed
by a ‘right’ rotation

Example 1:

Construct AVL tree using following sequence of data:

16, 27, 9, 11, 36, 54, 81, 63

Insert 16

Insert 27

Insert 9

Insert 11

16

16

27 16

27 9

16

27 9

11

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert 36

Insert 54

Insert 81

16

27 9

11 36
16

27 9

11 36

54

27

16

36 9

11

54

16

36 9

11
54

81

27

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert 63

Insert 72

16

36 9

11
54

81

27

63

16

36 9

11
63

81

27

54

16

36 9

11
63

81

27

54

72

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Example 2:

Create the AVL tree for the following data:

jan, feb, mar, apr, may, jun, jul, aug, sep, oct, noc, dec.

Insert: jan

Insert: feb

Insert: mar

Insert: apr

16

63 9

11
81

27

36

54 72

jan

jan
feb

feb mar

apr

feb mar

jan

jan

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert: may

Insert: jun

Insert: jul

jan

mar
Feb

apr
may

jan

mar Feb

apr may jun

jan

mar Feb

apr may jun

jul

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert: aug

Insert: sep

jan

mar Feb

apr may
jun

jul may

jan

mar may

apr may
jun

jul

feb

jan

mar may

apr may
jun

jul

feb

sep

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert: oct

Insert: nov

nov

jan

mar may

apr may
jun

jul

feb

sep

oct

jan

mar may

apr

may

jun

jul

feb

sep

oct

jan

mar may

apr

may

jun

jul

feb

sep

oct

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert: dec

apr

mar

Oct
jan

aug

nov

may

jul

jun

feb

sep

mar

Oct
jan

nov

may jun sep

apr

aug

jul feb

dec

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

The Huffman algorithm:
Huffman Coding is a technique of compressing data to reduce its size without losing any of the

details. It was first developed by David Huffman in 1951. Huffman Coding is generally useful to

compress the data in which there are frequently occurring characters.

Properties:

 Set of symbols to be transmitted or stored along with their frequencies/ probabilities/

weights and a tree-like data structure with minimum weighted path length from root is

formed which can be used for generating the binary codes.

 It is a famous algorithm used for lossless data encoding.

 It uses variable-length encoding scheme for assigning binary codes to characters depending

on how frequently they occur in the given text. The character that occurs most frequently is

assigned the smallest code and the one that occurs least frequently gets the largest code.

 Generally, bit ‘0’ represents the left child and bit ‘1’ represents the right child.

Algorithm:

1. Create a leaf node for each character and build a min heap using all the nodes

(The frequency value is used to compare two nodes in min heap)

2. Repeat Steps 3 to 5 while heap has more than one node

3. Extract two nodes, say x and y, with minimum frequency from the heap

4. Create a new internal node z with x as its left child and y as its right child. Also

frequency(z)= frequency(x)+frequency(y)

5. Add z to min heap

6. Last node in the heap is the root of Huffman tree

Example 1:

Create Huffman Tree for the following characters along

with their frequencies.

Characters Frequencies

a 10

e 15

i 12

o 3

u 4

s 13

t 1

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Create leaf nodes for all the characters and add them to the min heap.

Extract two nodes, with minimum frequency from the heap and create a new internal node by

adding.

Add the new internal node to the min heap.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Last node in the heap is the root of Huffman tree.

Traverse the tree starting from root node.

Add 0 to array while traversing the left child and

add 1 to array while traversing the right child.

Assigning binary codes to Huffman tree

We get prefix-free and variable-length

binary codes with minimum expected code

word length.

Characters Binary Codes

i 00

s 01

e 10

u 1100

t 11010

o 11011

a 111

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

B-Tree: “Balanced Tree”
 It is also known as balanced sorted tree.

 The height of the tree must be kept to a minimum.

 The leaves of the tree must all be the same level.

 The root has at least two subtree unless it is the only node in the tree.

 All nodes except the leaves must have at least some minimum number of children.

 Every node has maximum m children, if a B- tree has the order m.

 Every node has maximum (m-1) keys.

 Min Children:

o For leaf: 0

o For root: 2

o Internal nodes: [m/2]

 Min keys:

o Root node: 1

o All other nodes: [m/2]-1

Insertion:

Example 1:

Consider another example for B-Tree of order 5

C N G A H E K Q M F W L T Z D P R X Y S

Order 5 means that a node can have a maximum of 5 children and 4 keys

All nodes other than the root must have a minimum of 2 keys

Step 1:

The first 4 letters get inserted into the same node

Step 2:

When we try to insert the H, we find no room in this node, so we split it into 2 nodes, moving

the median item G up into a new root node

Step 3:

Inserting E, K, and Q proceeds without requiring any splits

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Step 4:

Inserting M requires a split. Note that M happens to

be the median key and so is moved up into the

parent node.

Step 5:

The letters F, W, L, and T are then added

without needing any split.

Step 6:

When Z is added, the rightmost leaf must be split. The median item T is moved up into the

parent node.

Step 7:

The insertion of D causes the leftmost leaf to be split. D happens to be the median key and so is

the one moved up into the parent node. The letters P, R, X, and Y are then added without any

need of splitting.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Step 8:

• Finally, when S is added, the node with N, P, Q, and R splits, sending the median Q up to

the parent. However, the parent node is full, so it splits, sending the median M up to

form a new root node. Final B-Tree look like

Example 2. Create a B tree of order 5 by inserting the following elements:

 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, 𝑎𝑛𝑑 19.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Deletion:

There are two main cases to be considered:

 Deletion from a leaf

 Deletion from a non-leaf

Case 1: Deletion from a leaf

a. If the leaf has at least (m-1)/2 data after deleting the desired value, the remaining larger

values are moved to "fill the gap".

Deleting 6 from the above tree

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

b. If the leaf is less than (m-1)/2 after deleting the desired value (known as underflow),

two things could happen

Deleting 7 from the tree above results in

i) If there is a left or right sibling with the number of keys exceeding the minimum

requirement,

a) all of the keys from the leaf and sibling will be redistributed between them by

moving the separator key from the parent to the leaf and

b) moving the middle key from the node and the sibling combined to the parent

ii) If the number of keys in the sibling does not exceed the minimum requirement,

a) The leaf and sibling are merged by putting the keys from the leaf, the sibling, and

the separator from the parent into the leaf.

b) The sibling node is discarded and the keys in the parent are moved to "fill the

gap".

c) If the parent itself is underflow, treat the parent as a leaf and continue repeating

from step a) until

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

The minimum requirement is met or the root of the tree is reached.

Deleting 8 from the tree above results in

Case 2: Deletion from a non-leaf node

a. The key to be deleted will be replaced by its immediate predecessor (or successor)

b. Then the predecessor (or successor) will be deleted since it can only be found in a

leaf node.

Deleting 16 from the tree above results in

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

The "gap" is filled in with the immediate predecessor

And then the immediate predecessor is deleted

If the immediate successor had been chosen as the replacement

Deleting the successor

The values in the left sibling are combined with the separator key (18) and the remaining

values. They are divided between the 2 nodes

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

And then the middle value is moved to the parent

Red Black Tree:

A Red Black Tree is a type of self-balancing binary search tree, in which every node is colored

with a red or black. The red black tree satisfies all the properties of the binary search tree but

there are some additional properties which were added in a Red Black Tree.

Properties of Red Black Tree:

1. The root node should always be black in color.

2. Every nil child of a node is black in red black tree.

3. The children of a red node are black. It can be possible that parent of red node is black

node.

4. All the nil have the same black depth. Every simple path from the root node to the

(downward) nil node contains the same number of black nodes.

Insertion:

o Insert the new node the way it is done in Binary Search Trees.

o Color the node red

o If an inconsistency arises for the red-black tree, fix the tree according to the type of

discrepancy.

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Example: Show the red-black trees that result after successively inserting the keys

41,38,31,12,19,8 into an initially empty red-black tree.

Insert 41

Insert 38

Insert 31

Insert 12

Insert 19

CHAPTER 6 TREE

[Shankar Bhandari][Sagarmatha Engineering College][IOE]

Insert 8

Binary Expression Tree:

The expression tree is a binary tree which is used to store algebraic expressions in which each internal

node corresponds to the operator and each leaf node corresponds to the operand.

Expression: (𝑎 – 𝑏) + (𝑐 ∗ 𝑑) Expression: 𝑎 + (𝑏 ∗ 𝑐) + 𝑑 ∗ (𝑒 + 𝑓)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• Sorting means arranging the elements of an array so that they are placed in some

relevant order which may be either ascending or descending.

• Sorting can be done based on key references which can be numbers, alphabets etc.

• if A is an array, then the elements of A are arranged in a sorted order (ascending order)

in such a way that A[0] < A[1] < A[2] < < A[N-1].

• For example, if we have an array that is declared and initialized as

• A[] = {21, 34, 11, 9, 1, 0, 22};

• Then the sorted array (ascending order) can be given as: A[] = {0, 1, 9, 11, 21, 22, 34};

• Examples of sorting in real life scenarios :

o Telephone directories in which names are sorted by location, category (business

or residential), and then in an alphabetical order.

o In a library, the information about books can be sorted alphabetically based on

titles and then by authors’ names.

o Customers’ addresses can be sorted based on the name of the city and then the

street.

• Sorting can be categorized in two different categories:

Types of sorting:
1. Internal Sorting:

• The sorting is done within the computer main memory and all the data to be

sorted is stored in main memory.

• It is performed when the data to be sorted is small enough to fit in main

memory. (It is used when the size of input is small.)

• In it, the storage device used is only main memory (RAM).

• Examples: Insertion sort, Quick Sort, Bubble Sort, etc.

2. External Sorting:

• The sorting is done in external file disk and data is stored outside the main

memory like on disk and only loaded into memory in small chunks.

• It is usually applied when data can’t fit in main memory entirely. (It is used when

the size of input is large.)

• In it, the storage device used are main memory (RAM) and secondary memory

(Hard Disk).

• Examples: External Merge Sort, External Radix Sort, Four Tape Sort.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Insertion sort:

• Insertion sort is implemented by inserting a particular data item in its proper

position.

• Any unsorted data item is kept on swapping with its previous data items until its

proper position is not found.

• The number of swapping makes the previous data items to shift for the new data

item to take its position in order.

• Once the new data item is inserted, the next data item after it is chosen for next

insertion.

• The process continues until all data items are sorted.

• We all are familiar with this technique of sorting, as we usually use it for ordering

a deck of cards.

• It is efficient for smaller data sets, but very inefficient for larger lists.

• Less efficient as compared to other more advanced algorithms such as quick

Sort, heap sort, and merge sort.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Algorithm:

Step 1 - If it is the first element, it is already sorted. Return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in the sorted sub-list
Step 4 − If the element in the sorted array is smaller than the current element,
then move to the next element. Else, shift greater elements in the array towards
the right.
Step 5 − Insert the value
Step 6 − Repeat until list is sorted

//𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏 𝒔𝒐𝒓𝒕 𝒍𝒐𝒈𝒊𝒄
 𝐅𝐨𝐫(𝐢 = 𝟏 ; 𝐢 < 𝐬𝐢𝐳𝐞 ; 𝐢 + +)
 {
 𝐭𝐞𝐦𝐩 = 𝐥𝐢𝐬𝐭[𝐢];
 𝐣 = 𝐢 − 𝟏;
 𝐰𝐡𝐢𝐥𝐞 ((𝐭𝐞𝐦𝐩 < 𝐥𝐢𝐬𝐭[𝐣])&& (𝐣 ≥ 𝟎))

 {
 𝐥𝐢𝐬𝐭[𝐣 + 𝟏] = 𝐥𝐢𝐬𝐭[𝐣];
 𝐣 = 𝐣 − 𝟏;
 }
 𝐥𝐢𝐬𝐭[𝐣 + 𝟏] = 𝐭𝐞𝐦𝐩;
 }

Example 1:

Efficiency:
Nested loops

Worst Case : O(n2)
Best Case : Ω(n)
Average Case : Θ(n2)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Selection Sort:
Selection Sort algorithm is an in-place comparison-based algorithm in which the list is divided

into two parts, the sorted part at the left end and the unsorted part at the right end. Initially,

the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues moving

unsorted array boundary by one element to the right.

Algorithm:

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

Example 1:

Worst Case : O(n2)
Best Case : Ω(n2)
Average Case : Θ(n2)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

Bubble Sort/ Exchange sort:

• a simple sorting algorithm which

o repeatedly steps through the list to be sorted

o compares each pair of adjacent items

o swaps them if they are in the wrong order

o The passing through the list is continued until the swapping is not required (i.e.

the list sorted)

• it is a comparison sort

• It is called Bubble Sort because the data gradually bubbles up in its proper position

• In each pass at least one data is bubbled up in its proper position

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example: 6 1 3 2 7

First Pass:

(𝟔 𝟏 3 2 7)(𝟏 𝟔 3 2 7), 𝑆𝑤𝑎𝑝 𝑠𝑖𝑛𝑐𝑒 6 > 1.

(1 𝟔 𝟑 2 7)(1 𝟑 𝟔 2 7), 𝑆𝑤𝑎𝑝 𝑠𝑖𝑛𝑐𝑒 6 > 3

(1 3 𝟔 𝟐 7)(1 3 𝟐 𝟔 7), 𝑆𝑤𝑎𝑝 𝑠𝑖𝑛𝑐𝑒 6 > 2

(1 3 2 𝟔 𝟕), 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑤𝑎𝑝

Second Pass:

(𝟏 𝟑 2 6 7)

(1 𝟑 𝟐 6 7)(1 𝟐 𝟑 6 7), 𝑆𝑤𝑎𝑝 𝑠𝑖𝑛𝑐𝑒 3 > 2

(1 2 𝟑 𝟔 7)(1 2 𝟑 𝟔 7)

(1 2 3 𝟔 𝟕)

• List is already sorted, but our algorithm does not know. Hence one more pass to
see if further swapping has to be done

Third Pass:

• (1 2 3 6 7), No swap up to the last comparison, hence the list is sorted

Algorithm:

The basic methodology of the working of bubble sort is given as follows:

 (𝑎)𝐼𝑛 𝑃𝑎𝑠𝑠 1, 𝐴[0]𝑎𝑛𝑑 𝐴[1]𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑, 𝑡ℎ𝑒𝑛 𝐴[1]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[2],

 𝐴[2]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[3], 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝐴[𝑁– 2]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[𝑁– 1].

 𝑃𝑎𝑠𝑠 1 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑛– 1 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 𝑎𝑛𝑑 𝑝𝑙𝑎𝑐𝑒𝑠 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦.

(𝑏)𝐼𝑛 𝑃𝑎𝑠𝑠 2, 𝐴[0]𝑎𝑛𝑑 𝐴[1]𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑, 𝑡ℎ𝑒𝑛 𝐴[1]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[2],

 𝐴[2]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[3], 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝐴[𝑁– 3]𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴[𝑁– 2].

 𝑃𝑎𝑠𝑠 2 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑛– 2 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 𝑎𝑛𝑑 𝑝𝑙𝑎𝑐𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒

𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦.

(𝑐) 𝐼𝑛 𝑃𝑎𝑠𝑠 𝑛– 1, 𝐴[0] 𝑎𝑛𝑑 𝐴[1] 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑠𝑜 𝑡ℎ𝑎𝑡 𝐴[0].

Efficiency:
Nested loops and for n items, n possible swaps

Worst Case : O(n2)
Best Case : Ω(n2)
Average Case : Θ(n2)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Merge sort:

• It is a divide and conquer algorithm

• At first we divide the given list of item

o list is divided into two parts from middle

o The process is repeated until each sub list contain exactly 1 item

• Now is the turn for sort and combine (conquer)

o A list with a single element is considered sorted automatically

o Pair of list is sorted and merged into one (i.e. approx. n/2 sub lists of size 2)

o The sort and merge is keep on repeated until a single list of size n is found

• The overall dividing and conquering is done recursively

• To sort A[p r]: (p=starting index , r=ending index)

Divide Step:

• If a given array A has zero or one element, simply return; it is already sorted.

• Otherwise, split A [p ... r] into two sub arrays A [p ... q] and A [q + 1 … r], each containing

about half of the elements of A [p ... r]. That is,

• q is the halfway point of A[p .. r].

Conquer Step

• Conquer by recursively sorting the two sub arrays A [p ... q] and A [q + 1 … r].

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Combine Step

• Combine the elements back in A [p … r] by merging the two sorted sub arrays A [p ... q]

and A [q + 1 ... r] into a sorted sequence.

• To accomplish this step, we will define a procedure MERGE (A, p, q, r).

Efficiency:
Divide and conquer (tree structure) : log n
However n sub-lists need to be sorted

𝑾𝒐𝒓𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛 ∗ 𝑙𝑜𝑔𝑛)
𝑩𝒆𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑂(𝑛 ∗ 𝑙𝑜𝑔𝑛)
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑪𝒂𝒔𝒆 ∶ 𝑂(𝑛 ∗ 𝑙𝑜𝑔𝑛)

Divide Conquer

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

Redix sort:
Radix sort is the linear sorting algorithm that is used for integers. In Radix sort, there is digit by

digit sorting is performed that is started from the least significant digit to the most significant

digit.

The process of radix sort works similar to the sorting of students names, according to the

alphabetical order.

Algorithm:

Step 1 – Find largest element in the given array and number of digits in the largest element.

Step 2 - Define 10 queues each representing a bucket for each digit from 0 to 9.

Step 3 - Consider the least significant digit of each number in the list which is to be sorted.

Step 4 - Insert each number into their respective queue based on the least significant digit.

Step 5 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into
their respective queues.

Step 6 - Repeat from step 4 based on the next least significant digit.

Step 7 - Repeat from step 3 until all the numbers are grouped based on the most significant
digit.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

𝑾𝒐𝒓𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛)
𝑩𝒆𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛)
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Quick sort:
• Also called partition-exchange sort

• Uses divide and conquer algorithm

• One pivot element is chosen from within the list

• The list is divided into two partitions

• All values less than the pivot are placed on left side of pivot

• All greater values are placed on right side of the pivot

• After a single pass, the pivot is in its proper position

• The left and right partitions are sorted recursively using the same method

• Joining the left sorted, pivot and right sorted results with the list in sorted order

Partition 1 Pivot Partition 2

Values <=Pivot Values > Pivot

Algorithm:

• Declare and initialize necessary variables array size, pivot,

• A[n]; array to be sorted, lb=0; first index of array, ub=n-1; last index of array

Step 1 − Make the left-most index value pivot

Step 2 − partition the array using pivot value

Step 3 − quicksort left partition recursively

Step 4 − quicksort right partition recursively

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

𝑾𝒐𝒓𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛^2)
𝑩𝒆𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛 𝑙𝑜𝑔𝑛)
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛𝑙𝑜𝑔𝑛)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Shell sort:
Shell sort is the generalization of insertion sort, which overcomes the drawbacks of insertion

sort by comparing elements separated by a gap of several positions.

It first sorts elements that are far apart from each other by swapping and successively reduces

the gap between the elements to be sorted. This gap is called as interval. The interval between

the elements is reduced based on the sequence used. Some of the optimal sequences that can

be used in the shell sort algorithm are:

• Shell′s original sequence: N/2 , N/4 , … , 1

• Knuth′s Formula = h ∗ 3 + 1 →where − h is interval with initial value 1

• Hibbard′s increments: 1, 3, 7, 15, 31, 63, 127, 255, 511 …

• Pratt: 1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81. . . .

Algorithm:

Step 1 − for the size of array ‘N’.

Step 2 − Divide the list into smaller sub-list of interval N/2.

Step 3 − Sort these sub-lists using insertion sort.

Step 3 − Repeat until complete list is sorted.

Shell Sort(a, n) // 'a' is the given array, 'n' is the size of array

• 𝑓𝑜𝑟 (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑛/2; 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 >= 1; 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 /= 2)
• 𝑓𝑜𝑟 (𝑗 = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙; 𝑗 < 𝑛; 𝑗 + +)
• 𝑓𝑜𝑟 (𝑖 = 𝑗 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙; 𝑖 >= 0; 𝑖 −= 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
• 𝑖𝑓 (𝑎[𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] > 𝑎[𝑖])

o 𝑏𝑟𝑒𝑎𝑘
• 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o 𝑠𝑤𝑎𝑝 (𝑎[𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙], 𝑎[𝑖])
• 𝐸𝑛𝑑 𝑆ℎ𝑒𝑙𝑙 𝑆𝑜𝑟𝑡

Example:

Let the elements of array are –

We will use the original sequence of shell sort, i.e., N/2, N/4...1 as the intervals.

Here, in the first loop, the element at the 0th position will be compared with the element at

4th position. If the 0th element is greater, it will be swapped with the element at 4th position.

Otherwise, it remains the same. This process will continue for the remaining elements.

Best Case: O(n*log n)
Average Case: O(n*log n)
Worst Case: O(n2)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

At the interval of 4, the sub lists are {33, 12}, {31, 17}, {40, 25}, {8, 42}.

After comparing and swapping, the updated array will look as follows –

In the second loop, elements are lying at the interval of 2 (n/4 = 2), where n = 8.

After comparing and swapping, the updated array will look as follows –

In the third loop, elements are lying at the interval of 1 (n/8 = 1), where n = 8.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Heap sort as a priority queue:
Heap sort is one of the sorting algorithms used to arrange a list of elements in order. Heap sort

algorithm uses one of the tree concepts called Heap Tree. The concept of heap sort is to eliminate the

elements one by one from the heap part of the list, and then insert them into the sorted part of the list.

Heap sort is the in-place sorting algorithm.

Algorithm:

Step 1 - Construct a Binary Tree with given list of Elements.

Step 2 - Transform the Binary Tree into Max Heap.

Step 3 - Delete the root element from Max Heap using Heapify method.

Step 4 - Put the deleted element into the Sorted list.

Step 5 - Repeat the same until Max Heap becomes empty.

Step 6 - Display the sorted list.

Heapify (a, n) // 'a' is the given array, 'n' is the size of array

𝑾𝒐𝒓𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛 𝑙𝑜𝑔 𝑛)
𝑩𝒆𝒔𝒕 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛 𝑙𝑜𝑔 𝑛)
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑪𝒂𝒔𝒆 ∶ 𝑶(𝑛 𝑙𝑜𝑔 𝑛)

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

82, 23, 77, 12, 15, 10, 55, 90

77, 23, 55, 12, 15, 10, 82, 90

55, 23, 10, 12, 15, 77, 82, 90

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Big ‘O’ notation and Efficiency of sorting:
Big - Oh notation is used to define the upper bound of an algorithm in terms of Time

Complexity. That means Big - Oh notation always indicates the maximum time required by an

algorithm for all input values. That means Big - Oh notation describes the worst case of an

algorithm time complexity.

 Big-O Analysis of Algorithms:

We can express algorithmic complexity using the big-O notation. For a problem of size N:

• A constant-time function/method is “order 1” : O(1)
• A linear-time function/method is “order N” : O(N)
• A quadratic-time function/method is “order N squared” : O(N 2)

23, 15, 10, 12, 55, 77, 82, 90

15, 12, 10, 23, 55, 77, 82, 90

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

The general step wise procedure for Big-O runtime analysis is as follows:

1. Figure out what the input is and what n represents.
2. Express the maximum number of operations, the algorithm performs in terms of n.
3. Eliminate all excluding the highest order terms.
4. Remove all the constant factors.

Runtime Analysis of Algorithms:

• 𝐴 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑙𝑜𝑔𝑛)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛.

• 𝐴 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛.

• 𝐴 𝑠𝑢𝑝𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛𝑙𝑜𝑔𝑛)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑖𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛.

• 𝐴 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛𝑐)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑞𝑢𝑖𝑐𝑘𝑒𝑟 𝑡ℎ𝑎𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑙𝑙 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑛.

• 𝐴 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑐𝑛)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑒𝑣𝑒𝑛 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑛.

• 𝐴 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛!)
𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑔𝑟𝑜𝑤𝑠 𝑡ℎ𝑒 𝑓𝑎𝑠𝑡𝑒𝑠𝑡 𝑎𝑛𝑑 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑞𝑢𝑖𝑐𝑘𝑙𝑦 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛
𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Algorithmic Examples of Runtime Analysis:

• 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑙𝑜𝑔𝑛) – 𝐵𝑖𝑛𝑎𝑟𝑦 𝑆𝑒𝑎𝑟𝑐ℎ.

• 𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛) – 𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑒𝑎𝑟𝑐ℎ.

• 𝑆𝑢𝑝𝑒𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛𝑙𝑜𝑔𝑛) – 𝐻𝑒𝑎𝑝 𝑆𝑜𝑟𝑡, 𝑀𝑒𝑟𝑔𝑒 𝑆𝑜𝑟𝑡.

• 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛^𝑐) – 𝐵𝑢𝑏𝑏𝑙𝑒 𝑆𝑜𝑟𝑡, 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑜𝑟𝑡, 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑆𝑜𝑟𝑡, 𝐵𝑢𝑐𝑘𝑒𝑡 𝑆𝑜𝑟𝑡.

• 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑐^𝑛) – 𝑇𝑜𝑤𝑒𝑟 𝑜𝑓 𝐻𝑎𝑛𝑜𝑖.

• 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 – 𝑂(𝑛!) – 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑏𝑦 𝑀𝑖𝑛𝑜𝑟𝑠.

Analysis of Bubble sort

• In Bubble Sort, n-1 comparisons will be done in the 1st pass, n-2 in 2nd pass, n-3 in 3rd pass and so

on.

𝑆𝑜 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒,

 (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + + 3 + 2 + 1

𝑆𝑢𝑚 =
𝑛(𝑛−1)

2
 ∵ Sn = n/2 [2a + (n-1) d]

𝑂(𝑛2)

• Hence the time complexity of Bubble Sort is O(n2).

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

It is a process of finding an element within the list of elements stored in any order.

It is not necessary that the data item we are searching for must be present in the list.

If the searched item is present in the list then the searching algorithm (or program) can find

that data item, in which case we say that the search is successful, but if the searched item is not

present in the list, then it cannot be found and we say that the search is unsuccessful.

Types of Searching:

 1. Linear /Sequential Searching:

• It is the simplest technique to find out an element in an unordered list.

• We search an element or value in a given array by traversing the array from the

starting, till the desired element or value is found.

• Suppose there are ‘n’ elements organized sequentially on a List. The number of

comparisons required to retrieve an element from the list, purely depends on where

the element is stored in the list. If it is the first element, one comparison will do; if it

is second element two comparisons are necessary and so on. On an average you

need [(n+1)/2] comparison‘s to search an element. If search is not successful, you

would need ‘n’ comparisons. The time complexity of linear search is O (n).

Steps:

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the

function

Step 4 - If both are not matched, then compare search element with the next element in

the list.

Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!"

and terminate the function.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, and 20.

• 24 is compared with first element (45). If not matched, move to next element.

• 24 is compared with second element (39). If not matched, move to next element.

• 24 is compared with third element (8). If not matched, move to next element.

• 24 is compared with fourth element (54). If not matched, move to next element.

• 24 is compared with fifth element (77). If not matched, move to next element.

• 24 is compared with Sixth element (38). If not matched, move to next element.

• 24 is compared with seventh element (24).Matched.

Sequential search efficiency:

• The number of comparisons of keys done in sequential search of a list of length n is

i. Unsuccessful search : n comparisons

ii. Successful search, best case : 1 comparison

iii. Successful search, worst case : n comparisons

iv. Successful search, average case : (n + 1)/2 comparisons

v. In any case, the number of comparison is O(n)

2. Binary Search:

• It is an extremely efficient algorithm.

• This search technique searches the given item in minimum possible comparisons.

• To do the binary search, first we have to sort the array elements.

• The logic behind this technique is given below.

i. First find the middle element of the array.

ii. Compare the middle element with an item.

iii. There are three cases:

a. If it is a desired element then search is successful,

b. If it is less than the desired item then search only in the first half of the

array.

c. If it is greater than the desired item, search in the second half of the

array.

iv. Repeat the same steps until an element is found or search area is exhausted.

Requirements:

i. The list must be ordered.

ii. Rapid random access is required, so we cannot use binary search for a linked list.

Index 0 1 2 3 4 5 6 7 8 9 10 11

list 45 39 8 54 77 38 24 16 4 7 9 20

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Binary search efficiency:

i. In all cases, the no. of comparisons in proportional to n. Hence, no. of comparisons

in binary search is O (log n), where n is the no. of items in the list.

ii. Obviously binary search is faster than sequential search, but there is an extra

overhead in maintaining the list ordered.

iii. Binary search is best suited for lists that are constructed and sorted once, and then

repeatedly searched.

Algorithm:

Given a table k of n elements in searching order searching for value x.

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒: 𝑙𝑜𝑤  0, ℎ𝑖𝑔ℎ  𝑛 − 1

2. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑒𝑎𝑟𝑐ℎ: 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑠𝑡𝑒𝑝 4 𝑤ℎ𝑖𝑙𝑒 𝑙𝑜𝑤 <= ℎ𝑖𝑔ℎ.

3. 𝑂𝑏𝑡𝑎𝑖𝑛 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: 𝑚𝑖𝑑  (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2

4. 𝐶𝑜𝑚𝑝𝑎𝑟𝑒:

𝐼𝑓 𝑋 < 𝑘[𝑚𝑖𝑑]𝑡ℎ𝑒𝑛 ℎ𝑖𝑔ℎ  𝑚𝑖𝑑 − 1

𝐸𝑙𝑠𝑒 𝑖𝑓 𝑋 > 𝑘[𝑚𝑖𝑑]𝑡ℎ𝑒𝑛 𝑙𝑜𝑤  𝑚𝑖𝑑 + 1

𝐸𝑙𝑠𝑒 𝑊𝑟𝑖𝑡𝑒 (“𝑆𝑒𝑎𝑟𝑐ℎ 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙”)

𝑅𝑒𝑡𝑢𝑟𝑛 (𝑚𝑖𝑑)

5. (“𝑆𝑒𝑎𝑟𝑐ℎ 𝑖𝑠 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙”)

𝑅𝑒𝑡𝑢𝑟𝑛

6. 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑

Example 1:

Search 43

Data found in Location 1.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Search 333

Search Value 333 is not found.

Example 2

Insertion Low High Mid Remarks

1. 0 9 4 X>k[4]

2. 5 9 7 X<k[7]

3. 5 6 5 X>k[5]

4. 6 6 6 X<k[6]

5. 6 5 5 Low>High

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Hashing:

• Hashing is the process of indexing and retrieving element in a data structure to provide faster

way of finding the element using hash key. Hash key is a value which provides the index value

where the actual data is to likely to be stored in data structure.

• It is the technique of representing longer records by shorter values called keys. Which are

generated from a string of text using a mathematical function.

• The keys are placed in a table called hash table where the keys are compared for finding the

roots.

Why hashing?

 If the array is not sorted, the search might require examining each and all

elements of the array. If the array is sorted, we can use the binary search, and therefore

reduce the worse-case runtime complexity to O (log n). We could search even faster if

we know in advance the index at which that value is located in the array. Suppose we do

have that function that would tell us the index for a given value. With this function our

search is reduced to just one probe, giving us a constant runtime O (1). Though, it

cannot guarantee a constant runtime for every case. Such a function is called a hash

function. A hash function is a function which when given a key, generates an address in

the table.

Hash Tables:

• A hash table is a collection of items which are stored in such a way as to make it easy to

find them later. Each position of the hash table, often called a slot, can hold an item and

is named by an integer value starting at 0. For example, we will have a slot named 0, a

slot named1, a slot named 2, and so on.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• Hash table is just an array which maps a key (data) into data structure with the help of

hash function such that insertion, deletion and search operations can be performed

with constant time complexity.

• In hash table, data is stored in an array format, where each data value has its own

unique index value. Access to data becomes fast if we know the index of desired data.

Hash Function:

• Hash function is a mathematical formula which takes a piece of data as input and

outputs an integer (i.e. hash value) which maps the data to a particular index in hash

table.

• The main aim of a hash function is that elements should be uniformly distributed. It

produces a unique set of integers within some suitable range in order to reduce the

number of collisions.

• In practice, there is no hash function that eliminates collisions completely. A good hash

function can only minimize the number of collisions by spreading the elements

uniformly throughout the array.

Characteristics of Good Hash Function

A good hash function should have the following characteristics:

• Minimize collision

• Be easy and quick to compute

• Distribute key values evenly in the hash table

• Use all the information provided in the key

• Have a high load factor for a given set of keys

How to Choose Hash Function?

The basic problems associated with the creation of hash tables are:

• An efficient hash function should be designed so that it distributes the index values of

inserted objects uniformly across the table.

• An efficient collision resolution algorithm should be designed so that it computes an

alternative index for a key whose hash index corresponds to a location previously

inserted in the hash table.

• We must choose a hash function which can be calculated quickly, returns values within

the range of locations in our table, and minimizes collisions.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Different Hash Functions:

1. Folding Method:

• In this method, the given key is partitioned into subparts k1, K2, k3, k4 kn

each of which has the same length as the required address. Now add all these

parts together and ignore the carry.

• For example:- if number of buckets be 100 and last address/index be 99, then

the given key for which hash code is calculated is divided into parts of two digits

from beginning as shown below:

• h(95073) = h(95 + 07 + 3)

▪ = h(105) //ignoring the carry = 5

• Example: Given a hash table of 100 locations, calculate the hash value using

folding method for keys 5678, 321, and 34567.

• Since there are 100 memory locations to address, we will break the key into

parts where each part (except the last) will contain two digits. The hash values

can be obtained as shown below:

2. Division Method:

• It is the most simple method of hashing an integer x. This method divides x by M

(slots available) and then uses the remainder obtained.

• In this case, the hash function can be given as z

• For example: - Let us say apply division approach to find hash value for some

values considering number of buckets be 10 as shown below.

Key 5678 321 34567

Parts 56 and 78 32 and 1 34,56 and 7

Sum 134 33 97

Hash Value 34(ignore the

last carry)

33 97

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

3. Mid-Square Method:

• It is a good hash function which works in two steps:

Step 1: Square the value of the key. That is, find k2.

Step 2: Extract the middle r digits of the result obtained in Step 1.

• The algorithm works well because most or all digits of the key value contribute to the

result. This is because all the digits in the original key value contribute to produce the

middle digits of the squared value. Therefore, the result is not dominated by the

distribution of the bottom digit or the top digit of the original key value.

• In it, the same r digits must be chosen from all the keys. Therefore, the hash function

can be given as: h (k) = s where s is obtained by selecting r digits from k2.

• Example: Calculate the hash value for keys 1234 and 5642 using the mid-square

method. The hash table has 100 memory locations.

• Note that the hash table has 100 memory locations whose indices vary from 0 to 99.

This means that only two digits are needed to map the key to a location in the hash

table, so r = 2.

• When k = 1234, k2 = 1522756, h (1234) = 2

• When k = 5642, k2 = 31832164, h (5642) = 3

• Observe that the 3rd and 4th digits starting from the right are chosen.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Collisions:

• There is possibility that two keys result in same value. The situation where a newly

inserted key maps to an already occupied slot in hash table is called collision and must

be handled using some collision handling technique.

• Two records cannot be stored in the same location of a hash table normally.

Collision Resolution and Clustering:

• Except direct hashing, none of the hashing methods are one-to- one mapping. Collisions

are likely even if we have big table to store keys and hence require collision resolution

techniques. Each collision resolution method can be used independently with each hash

function. As data are added and collision are resolved, hashing tend to cause data to

group within the list.

Collision Resolution Techniques:

1. Separate Chaining (Open Hashing)

2. Open Addressing (Closed Hashing)

a. Linear Probing

b. Quadratic Hashing

c. Double Hashing

Separate Chaining (Open Hashing):

• In chaining, each location in a hash table stores a pointer to a linked list that

contains all the key values that were hashed to that location. As new collisions

occur, the linked list grows to accommodate those collisions forming a chain.

• Chained hash tables with linked lists are widely used due to the simplicity of the

algorithms to insert, delete, and search a key. The code for these algorithms is

exactly the same as that for inserting, deleting, and searching a value in a single

linked list.

• Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9 memory

locations. Use h (k) = k mod m. In this case, m=9. Initially, the hash table can be given

as:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example1 :

 Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85,

92, 73, 101.

Then, h(50) = 50 mod 7 = 1

h(700) = 700 mod 7 = 0

h(76) = 76 mod 7 = 6

h(85) = 85 mod 7 = 1

h(92) = 92 mod 7 = 1

h(73) = 73 mod 7 = 3

h(101) = 101 mod 7 = 3

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Advantages:

• Simple to implement.

• Hash table never fills up, we can always add more elements to the chain.

• Less sensitive to the hash function or load factors.

• It is mostly used when it is unknown how many and how frequently keys may be

inserted or deleted.

Disadvantages:

• Cache performance of chaining is not good as keys are stored using linked list. Open

addressing provides better cache performance as everything is stored in same table.

• Wastage of Space (Some Parts of hash table are never used)

• If the chain becomes long, then search time can become O(n) in the worst case.

• Uses extra space for links.

Open Addressing:

Like separate chaining, open addressing is a method for handling collisions. In Open Addressing,

all elements are stored in the hash table itself. So at any point, size of table must be greater

than or equal to total number of keys

Insert (k): Keep probing until an empty slot is found. Once an empty slot is found, insert k.

Search (k): Keep probing until slot’s key doesn’t become equal to k or an empty slot is reached.

Delete (k): Delete operation is interesting. If we simply delete a key, then search may fail. So

slots of deleted keys are marked specially as “deleted”.

Insert can insert an item in a deleted slot, but search doesn’t stop at a deleted slot.

Open Addressing is done following ways:

a. Linear Probing:

In linear probing, we linearly probe for next slot. For example, typical gap between two

probes is 1 as taken in below example also. Let hash(x) be the slot index computed for x

using hash function and m be the table size.

𝒉𝒂𝒔𝒉 (𝒙) = 𝒌 𝒎𝒐𝒅 𝒎

 𝒉𝒂𝒔𝒉(𝒙, 𝒊) = (𝒉𝒂𝒔𝒉 (𝒙) + 𝒊) % 𝒎 𝒘𝒉𝒆𝒓𝒆 𝒊 𝒊𝒔 𝒑𝒓𝒐𝒃 𝒐𝒓 𝒄𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 𝒏𝒖𝒎𝒃𝒆𝒓

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• Calculate the hash key. h´(k) = k 𝑚𝑜𝑑 𝑚

• If hashTable [key] is empty, store the value directly, hashTable [key] = data.

• If the hash index already has some value, check for next index.

• ℎ(k, 𝑖) = (ℎ´(k) + 𝑖)𝑚𝑜𝑑 𝑚;

• If the next index is available hashTable [key], store the value. Otherwise try for next

index.

• Do the above process till we find the space.

Example 1:

Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92

and 101 into the table.

• Let h’(k) = k mod m, m = 10

k h(k,i)= (h’(k) + i) mod 10

72 h(72,0)=(72 mod 10 + 0) mod 10=2 mod 10 =2

27 h(27,0)=(27 mod 10 + 0) mod 10=7 mod 10 =7

36 h(36,0)=(36 mod 10 + 0) mod 10=6 mod 10 =6

24 h(24,0)=(24 mod 10 + 0) mod 10=4 mod 10 =4

63 h(63,0)=(63 mod 10 + 0) mod 10=3 mod 10 =3

81 h(81,0)=(81 mod 10 + 0) mod 10=1 mod 10 =1

92 h(92,0)=(92 mod 10 + 0) mod 10=2 mod 10 =2(A[2] is occupied)
Then i=1, h(92,1)=(92 mod 10 + 1) mod 10=3 mod 10 =3(A[3] is occupied)
Then i=2, h(92,2)=(92 mod 10 + 2) mod 10=4 mod 10 =4(A[4] is occupied)
Then i=3, h(92,3)=(92 mod 10 + 3) mod 10=5 mod 10 =5

101 h(101,0)=(101 mod 10 + 0) mod 10=1 mod 10 =1 (A[1] is occupied)
Then i=1, h(101,1)=(101 mod 10 + 1) mod 10=2 mod 10 =2(A[2] is occupied)
Repeat process until i=7.

0 1 2 3 4 5 6 7 8 9

81 72 63 24 92 36 27 101

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

Let us consider a simple hash function as “key mod 7” and sequence of keys

as 50, 700, 76, 85, 92, 73, 101. Use linear probling and insert the keys into table.

Advantages:

• No extra space

Disadvantages:

• Searching Difficult

• Primary Clustering

• Secondary Clustering

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

b. Quadratic Hashing:

• In this technique, if a value is already stored at a location generated by h(k), then the

following hash function is used to resolve the collision:

𝒉(𝒌, 𝒊) = [𝒉’(𝒌) + 𝒊𝟐]𝒎𝒐𝒅 𝒎 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑎𝑠ℎ 𝑡𝑎𝑏𝑙𝑒,

𝒐𝒓

𝒉(𝒌, 𝒊) = (𝒉′(𝒌) + 𝒄𝟏 ∗ 𝒊 + 𝒄𝟐 ∗ 𝒊𝟐)% 𝒎

𝒉’(𝒌) = (𝒌 𝒎𝒐𝒅 𝒎), 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡ℎ𝑎𝑡 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑚– 1.

• It eliminates the primary clustering phenomenon of linear probing because instead

of doing a linear search, it does a quadratic search.

𝑙𝑒𝑡 ℎ𝑎𝑠ℎ(𝑥)𝑏𝑒 𝑡ℎ𝑒 𝑠𝑙𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.

 𝐼𝑓 𝑠𝑙𝑜𝑡 ℎ𝑎𝑠ℎ(𝑥) % 𝑆 𝑖𝑠 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 1 ∗ 1) % 𝑆

𝐼𝑓 (ℎ𝑎𝑠ℎ(𝑥) + 1 ∗ 1)% 𝑆 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 2 ∗ 2)% 𝑆

𝐼𝑓 (ℎ𝑎𝑠ℎ(𝑥) + 2 ∗ 2) % 𝑆 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 3 ∗ 3) % 𝑆

.

. ..

Example 1:

Consider a

hash table

of size 10.

Using

quadratic

probing,

insert the

keys 72, 27,

36, 24, 63,

81, and 101

into the

table.

Let h’ (k) = k

mod m,

 m = 10

k h(k,i)=(h’(k)+i2) mod 10

72 h(72,0)=(72 mod 10 + 02) mod 10=2 mod 10 =2

27 h(27,0)=(27 mod 10 + 02) mod 10=7 mod 10 =7

36 h(36,0)=(36 mod 10 + 02) mod 10=6 mod 10 =6

24 h(24,0)=(24 mod 10 + 02) mod 10=4 mod 10 =4

63 h(63,0)=(63 mod 10 + 02) mod 10=3 mod 10 =3

81 h(81,0)=(81 mod 10 + 02) mod 10=1 mod 10 =1

101 h(101,0)=(101 mod 10 + 02) mod 10=1 mod 10 =1 [is occupied]

h(101,1)=(101 mod 10 + 12) mod 10=2 mod 10 =2 [is occupied]

h(101,2)=(101 mod 10 + 22) mod 10=5 mod 10 =5

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

Let us consider a simple hash function as “key mod 10” and sequence of keys as 42, 16, 91, 33,

18, 27, 36.

0 1 2 3 4 5 6 7 8 9

81 72 63 24 101 36 27

k h(k,i)=(h’(k)+i2) mod 10

42 h(42,0)=(42 mod 10 + 02) mod 10=2 mod 10 =2

16 h(16,0)=(16 mod 10 + 02) mod 10=6 mod 10 =6

91 h(91,0)=(91 mod 10 + 02) mod 10=1 mod 10 =1

33 h(33,0)=(33mod 10 + 02) mod 10=3 mod 10 =3

18 h(18,0)=(18mod 10 + 02) mod 10=8 mod 10 =8

27 h(27,0)=(27mod 10 + 02) mod 10=7 mod 10 =7

36 h(36,0)=(36 mod 10 + 02) mod 10=6 mod 10 =6 [is occupied]

h(36,1)=(36 mod 10 +12) mod 10=7 mod 10 =7 [is occupied]

h(36,2)=(36 mod 10 + 22) mod 10=10 mod 10 =0

0 1 2 3 4 5 6 7 8 9

36 91 42 33

16 27 18

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Advantages:

• No extra space

• Primary Clustering Resolved

Disadvantages:

• Secondary Clustering

• No guarantee of finding slot

c. Double Hashing:

• It uses one hash value and then repeatedly steps forward an interval until an empty

location is reached. The interval is decided using a second, independent hash

function, hence the name double hashing.

• In double hashing, we use another hash function hash2(x) and look for 𝑖 ∗ ℎ𝑎𝑠ℎ2(𝑥)

slot in i’th rotation.

𝒉𝒂𝒔𝒉𝟏(𝒙) = 𝒌 𝒎𝒐𝒅 𝒎

𝒉𝒂𝒔𝒉 (𝒙, 𝒊) = (𝒉𝒂𝒔𝒉𝟏 (𝒙) + 𝒊 ∗ 𝒉𝒂𝒔𝒉𝟐(𝒙)) 𝒎𝒐𝒅 𝒎

𝒘𝒉𝒆𝒓𝒆 𝒊 𝒊𝒔 𝒕𝒉𝒆 𝒑𝒓𝒐𝒃𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒕𝒉𝒂𝒕 𝒗𝒂𝒓𝒊𝒆𝒔 𝒇𝒓𝒐𝒎 𝟎 𝒕𝒐 𝒎 − 𝟏, 𝒂𝒏𝒅

𝒉𝒂𝒔𝒉𝟐(𝒙) = 𝑹 − 𝒌 𝒎𝒐𝒅 𝑹 , 𝑹 𝒊𝒔 𝒂 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝒕𝒉𝒆 𝒕𝒂𝒃𝒍𝒆 𝒔𝒊𝒛𝒆 𝒎

𝐿𝑒𝑡 ℎ𝑎𝑠ℎ(𝑥) 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑙𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.

𝐼𝑓 𝑠𝑙𝑜𝑡 ℎ𝑎𝑠ℎ(𝑥) % 𝑚 𝑖𝑠 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 1 ∗ ℎ𝑎𝑠ℎ2(𝑥)) % 𝑚

𝐼𝑓 (ℎ𝑎𝑠ℎ(𝑥) + 1 ∗ ℎ𝑎𝑠ℎ2(𝑥))% 𝑚 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 2 ∗ ℎ𝑎𝑠ℎ2(𝑥))% 𝑚

𝐼𝑓 (ℎ𝑎𝑠ℎ(𝑥) + 2 ∗ ℎ𝑎𝑠ℎ2(𝑥))% 𝑚 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑓𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑡𝑟𝑦 (ℎ𝑎𝑠ℎ(𝑥) + 3 ∗ ℎ𝑎𝑠ℎ2(𝑥)) % 𝑚

.

.

Example 1:

Consider a hash table of size = 10. Using double hashing, insert the keys 72, 27, 36, 24, 63, 81,

92, and 101 into the table. Take h1 = (k mod 10) and h2 = (k mod 8). [Let m = 10]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

k h(k,i)=[h1(k)+ih2(k)]mod m

72 h(72,0)=[72 mod 10 + 0(72 mod 8)]mod 10=2

27 h(27,0)=[27 mod 10 + 0(27 mod 8)]mod 10=7

36 h(36,0)=[36 mod 10 + 0(36 mod 8)]mod 10=6

24 h(24,0)=[24 mod 10 + 0(24 mod 8)]mod 10=4

63 h(63,0)=[63 mod 10 + 0(63 mod 8)]mod 10=3

81 h(81,0)=[81 mod 10 + 0(81 mod 8)]mod 10=1

92 h(92,0)=[92 mod 10 + 0(92 mod 8)]mod 10=2 [Collision since A[2] is occupied.]

h(92,1)=[92 mod 10 + 1(92 mod 8)]mod 10=(2+4) mod 10 = 6 [Collision since A[6] is occupied.]

h(92,2)=[92 mod 10 + 2(92 mod 8)]mod 10=(2+2*4) mod 10= 0

101 h(101,0)=[101 mod 10 + 0(101 mod 8)]mod 10=1[Collision since A[1] is occupied.]

h(101,1)=[101 mod 10 + 1(101 mod 8)]mod 10=6[Collision since A[6] is occupied.]

h(101,2)=[101 mod 10 + 2(101 mod 8)]mod 10=1[Collision since A[1] is occupied.]

Repeat the entire process until a vacant location is found. We will see that we have to probe

many times to insert the key 101 in the hash table.

Advantages:

• No extra space

• No primary Clustering

• No Secondary Clustering

Disadvantages:

• Requires more computation time as two hash functions need to be computed.

0 1 2 3 4 5 6 7 8 9

92 81 72 63 24

36 27

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

 Asymptotic notations are the mathematical notations used to describe the running time

of an algorithm when the input tends towards a particular value or a limiting value.

 When it comes to analyzing the complexity of any algorithm in terms of time and space,

we can never provide an exact number to define the time required and the space

required by the algorithm, instead we express it using some standard notations, also

known as Asymptotic Notations.

 Using asymptotic analysis, we can very well conclude the best case, average case, and

worst case scenario of an algorithm.

 For example: In bubble sort, when the input array is already sorted, the time taken by

the algorithm is linear i.e. the best case. But, when the input array is in reverse

condition, the algorithm takes the maximum time (quadratic) to sort the elements i.e.

the worst case. When the input array is neither sorted nor in reverse order, than it takes

average time.

 Types of Asymptotic Notation

1. Big-O Notation (Ο) – Big O notation specifically describes worst case

scenario.

2. Omega Notation (Ω) – Omega (Ω) notation specifically describes best case

scenario.

3. Theta Notation (θ) – This notation represents the average complexity of an

algorithm.

Big-O Notation (Ο):

Big O notation specifically describes scenario. It represents the upper bound running time

complexity of an algorithm. Many times we easily find an upper bound by simply looking at the

algorithm.

 𝑂(𝑔(𝑛)) = { 𝑓(𝑛) ∶ 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐 𝑎𝑛𝑑

 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝟎 ≤ 𝒇(𝒏) ≤ 𝒄 ∗ 𝒈(𝒏)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 >= 𝑛0 }

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example:

𝑓(𝑛) = 3𝑛 + 2

𝑔(𝑛) = 𝑛

𝑐𝑎𝑛 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑓(𝑛) = 𝑂(𝑔(𝑛))?
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑖𝑠 0 <= 𝑓(𝑛) <= 𝑐 ∗ 𝑔(𝑛)

0 <= 3𝑛 + 2 <= 𝑐 ∗ 𝑛

0 <= 3𝑛 + 2 <= 4 ∗ 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛0 >= 2

𝑆𝑜, 𝑓(𝑛) = 𝑂(𝑔(𝑛))

 3𝑛 + 2 = 𝑂(𝑛)

Big-Omega Notation (Ω):

Omega notation represents the lower bound of the running time of an algorithm. Thus, it

provides the best case complexity of an algorithm.

𝛺(𝑔(𝑛)) = { 𝑓(𝑛): 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐 𝑎𝑛𝑑 𝑛0

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝟎 ≤ 𝒄𝒈(𝒏) ≤ 𝒇(𝒏)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0 }

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example:

𝑓(𝑛) = 3𝑛 + 2

𝑔(𝑛) = 𝑛

𝑐𝑎𝑛 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑓(𝑛) = 𝛺 (𝑔(𝑛))?

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑖𝑠 0 <= 𝑐 ∗ 𝑔(𝑛) <= 𝑓(𝑛)

0 <= 𝑐 ∗ 𝑛 <= 3𝑛 + 2

0 <= 𝑛 <= 3𝑛 + 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛0 >= 1

𝑆𝑜, 𝑓(𝑛) = 𝛺 (𝑔(𝑛))

 3𝑛 + 2 = 𝛺 (𝑛)

Theta Notation (θ):

This notation describes both upper bound and lower bound of an algorithm so we can say that

it defines exact asymptotic behavior. In the real case scenario the algorithm not always run on

best and worst cases, the average running time lies between best and worst and can be

represented by the theta notation. Thus, it provides the average case complexity of an

algorithm.

𝛩(𝑔(𝑛)) = { 𝑓(𝑛): 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2 𝑎𝑛𝑑 𝑛0

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝟎 ≤ 𝒄𝟏𝒈(𝒏) ≤ 𝒇(𝒏) ≤ 𝒄𝟐𝒈(𝒏)

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0 }

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example:

𝑓(𝑛) = 3𝑛 + 2

𝑔(𝑛) = 𝑛

𝑐𝑎𝑛 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑓(𝑛) = 𝜃 (𝑔(𝑛))?

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑖𝑠 𝑐1 ∗ 𝑔(𝑛) <= 𝑓(𝑛) <= 𝑐2 ∗ 𝑔(𝑛)

𝑐1𝑛 <= 3𝑛 + 2 <= 𝑐2𝑛

𝑛 <= 3𝑛 + 2 <= 5𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛0 >= 1

𝑆𝑜, 𝑓(𝑛) = 𝜃 (𝑔(𝑛))

 3𝑛 + 2 = 𝜃 (𝑛)

Little o Notation:

Little o notation is used to describe an upper bound that cannot be tight. In other words, loose

upper bound of f(n). It is formally defined as:

𝑂(𝑔(𝑛)) = { 𝑓(𝑛) ∶ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠

 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑛0 ≥ 1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝟎 ≤ 𝒇(𝒏) < 𝒄 ∗ 𝒈(𝒏)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 >= 𝑛0 }

Using mathematical relation, we can say that f(n) = o(g(n)) means,

Little ω notation:

𝜔(𝑔(𝑛)) = { 𝑓(𝑛): 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠

 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑛0 ≥ 1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝟎 ≤ 𝒄 ∗ 𝒈(𝒏) < 𝒇(𝒏)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0 }

Note: Omega (ω) is a rough estimate of the order of the growth whereas Big Omega (Ω) may

represent exact order of growth.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

 Representation and Application:

Graph is a non-linear data structure. It contains a set of points known as nodes (or vertices) and

a set of links known as edges (or Arcs). Here edges are used to connect the vertices.

A graph G can be defined as an ordered set G (V, E) where V (G) represents the finite and non-

empty set of vertices and E(G) represents the set of edges which are used to connect these

vertices.

Example:

The following is a graph with 5 vertices and 6 edges.

𝑇ℎ𝑖𝑠 𝑔𝑟𝑎𝑝ℎ 𝐺 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝐺 = (𝑉 , 𝐸)

𝑊ℎ𝑒𝑟𝑒 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 𝑎𝑛𝑑 𝐸 = {(𝐴, 𝐵), (𝐴, 𝐶)(𝐴, 𝐷), (𝐵, 𝐷), (𝐶, 𝐷), (𝐵, 𝐸), (𝐸, 𝐷)}.

Graph terminologies:

Vertex: An individual data element of a graph is called as Vertex. Vertex is also known as node.

In above example graph, A, B, C, D & E are known as vertices.

Edge: An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (starting Vertex, ending Vertex).In above graph, the link between vertices A and

B is represented as (A, B).

Adjacent Vertices: Two vertices u and v in an undirected graph G are called adjacent in G if u

and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u and

v and e is said to connect u and v.

Degree of Vertex: The degree of a vertex in an undirected graph is the number of edges

incident with it. A loop at a vertex contributes twice to the degree of that vertex. The degree of

the vertex v is denoted by deg(v). A vertex of degree zero is called isolated. A vertex with

degree one is called pendant. Example: deg (A) = 3, deg (B) =3 deg (E)=2.

In-degree: The in-degree of a vertex v is the number of edges that are incoming - towards v

(head of edge).It is denoted by deg– (u).

Out-degree: the out-degree of a vertex v is the number of edges that are outgoing from v (tail

of edge).It is denoted by deg+ (u).

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Types of Graph:

• Directed Graph:

o In a directed graph, the connection between two nodes

is one-directional.

o It is a graph in which each edge has a direction to its

successor.

o It is a graph with only directed edges.

• Undirected Graph:
o In an undirected graph, all connections are bi-directional.

o It is a graph in which there is no direction on the edges.

The flow between two vertices can go in either direction.

• Connected Graph: An undirected graph is called connected if

there is a path between every pair of distinct vertices of the

graph.

Node (u) Deg-(u) Deg+(u)

0 0 3

1 1 2

2 1 1

3 3 1

4 2 0

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• Not-Connected Graph: An undirected graph that is not connected is called disconnected

• Strongly Connected Graph: A directed graph is strongly connected if there is a path

from A to B and from B to A whenever A and B are vertices in the graph.

• Weakly Connected Graph: A directed graph is weakly connected if there is a path

between every two vertices in the underlying undirected graph. That is, a directed graph

is weakly connected if and only if there is always a path between two vertices when the

directions of the edges are disregarded.

Complete Graph:

• A graph in which any V node is adjacent to all other nodes

present in the graph is known as a complete graph. An

undirected graph contains the edges that are equal to

𝑒𝑑𝑔𝑒𝑠 = 𝑛(𝑛 − 1)/2 where n is the number of vertices

present in the graph. The following figure shows a

complete graph.

Regular Graph:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• It is the graph in which nodes are adjacent to each other, i.e., each node is accessible

from any other node.

Cycle Graph:

• A graph having cycle is called cycle graph. In this case the first and last nodes are the

same. A closed simple path is a cycle.

Acyclic Graph: A graph without cycle is called acyclic graphs.

Weighted Graph:

• Graphs that have a number assigned to each

edge are called weighted graphs.

• In a weighted graph, each edge has an

associated numerical value, called the weight

of the edge. Edge weights may represent

distances, costs, etc.

• Example: In a flight route graph, the weight of

an edge represents the distance in miles

between the endpoint airports

Planar Graph:

• A graph is called planar if it can be drawn in the plane without any edges crossing, i.e., it

can be drawn on the plane in such a way that its edges intersect only at their endpoints.

In other words, it can be drawn in such a way that no edges cross each other.

Representation of Graphs:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

1. Adjacency matrix :

• In it, we have a matrix of order n*n where n is the number of nodes in the graph.

The matrix represents the mapping between various edges and vertices.

• In the matrix, each row and column represents a vertex. The values determine the

presence of edges.

• Let Aij represents each element of the adjacency matrix. Then,

• For an undirected graph, the value of Aij is 1 if there exists an edge between i and j.

Otherwise, the value of Aij is 0.

• For a directed graph, the value of Aij is 1 only if there is an edge from i to j i.e. i is the

initial node and j is the terminal node.

• The time complexity of the adjacency matrix is O(n2).

2. Adjacency list:

• The adjacency list is an array of linked lists where the array denotes the total vertices

and each linked list denotes the vertices connected to a particular node.

• In a linked list, the most important component is the pointer named ‘Head’ because this

single pointer maintains the whole linked list. For linked list representation, we will have

total pointers equal to the number of nodes in the graph.

• For an undirected graph, we will link all the edges in the list that are connected to a

node as shown:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• In a directed graph, we will link only the initial nodes in the list as shown:

Applications of Graph

• In Computer science graphs are used to represent the flow of computation.

• Google maps uses graphs for building transportation systems, where intersection of

two(or more) roads are considered to be a vertex and the road connecting two vertices

is considered to be an edge, thus their navigation system is based on the algorithm to

calculate the shortest path between two vertices.

• Computer networks: Local area network, Internet, Web

• Facebook’s Friend suggestion algorithm uses graph theory. Facebook is an example of

undirected graph.

• In World Wide Web, web pages are considered to be the vertices. There is an edge from

a page u to other page v if there is a link of page v on page u. This is an example of

Directed graph. It was the basic idea behind Google Page Ranking Algorithm.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Transitive closure:

• Transitive Closure it the reachability matrix to reach from vertex u to vertex v of a graph.

One graph is given, we have to find a vertex v which is reachable from another vertex u,

for all vertex pairs (u, v).

• It states if there is a path from vertex a to b then there should be an edge from a to b.

• For finding transitive closure of a graph

• Add an edge from a to c if there exists a path from a to b and b to c

• Repeat this process of adding edge until no new edges are added.

• Hence, it can be defined as, If G=(V,E) in a graph then its transitive closure can be

defined as G*=(V,E*) where E*={(Vi,Vj): there exists a path from Vi to Vj in G}

Transitive Closure of a Directed Graph

• Given a directed graph, find out if a vertex j is reachable from another vertex i for all

vertex pairs (i, j) in the given graph. Here reachable mean that there is a path from

vertex i to j. The reach-ability matrix is called the transitive closure of a graph.

• Transitive closure is also stored as a matrix T, so if T[1][5] = 1, then node 5 can be

reached from node 1 in one or more hops.

• For example, consider below graph

V 1 2 3 4

1 0 0 1 0

2 1 0 0 1

3 0 0 0 0

4 0 1 0 0

(a) A graph G and its (b) transitive closure G*

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• Transitive closure of above graphs is

Warshall’s algorithm for finding transitive closure from diagraph:

• Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

• It implies the following rules for generating R(k) from R(k-1) :

Rule 1 If an element in row i and column j is 1 in R(k-1), it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1), it has to be changed to 1 in R(k) if

and only if the element in its row i and column k and the element in its column j and row

k are both 1’s in R(k-1) .

The main idea of these graphs is described as follows:

• The vertices i, j will be contained a path if

• The graph contains an edge from i to j; or

• The graph contains a path from i to j with the help of vertex 1; or

• The graph contains a path from i to j with the help of vertex 1 and/or vertex 2; or

• The graph contains a path from i to j with the help of any other vertices.

V 1 2 3 4

1 0 0 1 0

2 1 1 1 1

3 0 0 0 0

4 1 1 1 1

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

 Example 1:

Figure.

Fig: Rule for changing zero’s in Warshall’s Algorithm

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following

adjacency matrix.

Applying Warshall's algorithm yields the following sequence of matrices

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Traversing a Graph:

• Graph traversal is a technique used for searching a vertex in a graph.

• The graph traversal is also used to decide the order of vertices is visited in the search

process.

• A graph traversal finds the edges to be used in the search process without creating

loops. That means using graph traversal we visit all the vertices of the graph without

getting into looping path.

• There are two graph traversal techniques and they are as follows:

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search):

 DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a

graph without loops. We use Stack data structure with maximum size of total number of

vertices in the graph to implement DFS traversal. We use the following steps to

implement DFS traversal...

Step 1 - Define a Stack of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and

push it on to the Stack.

Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at

the top of stack and push it on to the stack.

Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex

which is at the top of the stack.

Step 5 - When there is no new vertex to visit then use back tracking and pop one

vertex from the stack.

Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Step 7 - When stack becomes Empty, then produce final spanning tree by

removing unused edges from the graph

Example 1:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

BFS (Breadth First Search)

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph

without loops. We use Queue data structure with maximum size of total number of vertices

in the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue.

Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the

Queue and insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of

the Queue then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing

unused edges from the graph

Example 1:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Topological Sort

• Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices

such that for every directed edge u v, vertex u comes before v in the ordering.

Topological sorting for a graph is not possible if the graph is not a DAG.

Topological Sort using Depth First Search (DFS)

o Use temporary stack to store the vertex.

o Maintain a visited [] to keep track of already visited vertices.

o In DFS we print the vertex and make recursive call to the adjacent vertices but

here we will make the recursive call to the adjacent vertices and then push the

vertex to stack.

o Observe closely the previous step, it will ensure that vertex will be pushed to

stack only when all of its adjacent vertices (descendants) are pushed into stack.

o Finally print the stack.

o For disconnected graph, Iterate through all the vertices, during iteration, at a

time consider each vertex as source (if not already visited).

• For example, a topological sorting of the following graph is “5 4 2 3 1 0”.

• There can be more than one topological sorting for a graph.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

• For example, another topological sorting of the following graph is “4 5 2 3 1 0”.

• For example, a topological sorting of the following graph is “A B E F D C ”.

• There can be more than one topological sorting for a graph.

Topological Sort using Breadth First Search (BFS)/ Kahn’s Algorithm

For that, we will maintain an array T[], which will store the ordering of the vertices in

topological order. We will store the number of edges that are coming into a vertex in an

array in_degree[N], where the i-th element will store the number of edges coming into the

vertex i. We will also store whether a certain vertex has been visited or not in visited[N]. We

will follow the below steps:

• First, take out the vertex whose in_degree is 0. That means there is no edge that is
coming into that vertex.

• We will append the vertices in the Queue and mark these vertices as visited.

• Now we will traverse through the queue and in each step we will dequeue () the front
element in the Queue and push it into the T.

• Now, we will put out all the edges that are originated from the front vertex which
means we will decrease the in_degree of the vertices which has an edge with the front
vertex.

• Similarly, for those vertices whose in_degree is 0, we will push it in Queue and also
mark that vertex as visited.

F
B

A

E

C

D

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Minimum Spanning Tree:

• Given a connected and undirected graph, a spanning tree of that graph is a subgraph

that is a tree and connects all the vertices together and the graph doesn’t have any

nodes which loop back to itself.

• A single graph can have many different spanning trees.

• A minimum spanning tree (MST) or minimum weight spanning tree for a weighted,

connected and undirected graph is a spanning tree with weight less than or equal to the

weight of every other spanning tree.

• The weight of a spanning tree is the sum of weights given to each edge of the spanning

tree

• In real-world situations, this weight can be measured as distance, congestion, traffic

load or any arbitrary value denoted to the edges.

• The total number of spanning trees with n vertices that can be created from a complete

graph is equal to n(n-2).

• A minimum spanning tree has (V – 1) edges where V is the number of vertices in the

given graph.

Example 1:

Example 2:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 3:

Kruskal’s algorithm:

Below are the steps for finding MST using Kruskal’s algorithm

Step 1: Remove all loops and parallel edges. In case of parallel edges, keep the one

which has the least cost associated and remove all others.

Step 2: Arrange all edges in their increasing order of weight

Step 3: Pick the smallest edge. Check if it forms a cycle with the spanning tree formed

so far. If cycle is not formed, include this edge. Else, discard it.

Step 4: Repeat step 3 until there are (V-1) edges in the spanning tree.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 1:

• Remove all loops and parallel edges. In case of parallel edges, keep the one which has

the least cost associated and remove all others.

• Arrange all edges in their increasing order of weight. Create a set of edges and weight,

and arrange them in an ascending order of weightage (cost).

• Now we start adding edges to the graph beginning from the one which has the least

weight. Throughout, we shall keep checking that the spanning properties remain intact.

In case, by adding one edge, the spanning tree property does not hold then we shall

consider not to include the edge in the graph.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Next cost in the table is 4, and we observe that adding it will create a circuit in the

graph. −We ignore it. In the process we shall ignore/avoid all edges that create a

circuit.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on

By adding edge S,A we have included all the nodes of the graph and we now have minimum

cost spanning tree.

Prim's Algorithm is a greedy algorithm that is used to find the minimum spanning tree from

a graph. Prim's algorithm finds the subset of edges that includes every vertex of the graph such

that the sum of the weights of the edges can be minimized.

Prim's algorithm starts with the single node and explores all the adjacent nodes with all the

connecting edges at every step. The edges with the minimal weights causing no cycles in the

graph got selected.

The steps to implement the prim's algorithm are given as follows -

o First, remove all loops and parallel edges and we have to initialize an MST with the

randomly chosen vertex.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

o Now, we have to find all the edges that connect the tree in the above step with the new

vertices. From the edges found, select the minimum edge and add it to the tree.

o Repeat step 2 until the minimum spanning tree is formed.

Example 1:

Remove all loops and parallel edges from

the given graph. In case of parallel edges,

keep the one which has the least cost

associated and remove all other

Choose any arbitrary node as root node

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily

chosen, so any node can be the root node. One may wonder why any node can be a root node.

So the answer is, in the spanning tree all the nodes of a graph are included and because it is

connected then there must be at least one edge, which will join it to the rest of the tree.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree i.e., S-7-A-3-C.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Example 2:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Round Robin Algorithm:

This method provides better performance when the number of edges is low. Initially each node

is considered to be a partial tree. Each partial tree is maintained in a queue Q.

• Priority queue is associated with each partial tree, which contains all the arcs ordered by

their weights.

• The algorithm proceeds by removing a partial tree, T1, from the front of Q, finding the

minimum weight arc a in T1; deleting from Q, the tree T2, at the other end of arc a;

combining T1 and T2 into a single new tree T3 and at the same time combining priority

queues of T1 and T2 and adding T3 at the rear of priority queue.

• This continues until Q contains a single tree, the minimum spanning tree.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Only 1 partial tree is left in the queue, which is the required minimum spanning tree.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Shortest path algorithm

Greedy Algorithm:

 A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems. The

algorithm makes the optimal choice at each step as it attempts to find the overall optimal

way to solve the entire problem.

It follows local optimal choice of each stage with intend of finding global optimum.

Greedy algorithms are quite successful in some problems, such as Huffman encoding which is

used to compress data, or Dijkstra's algorithm, which is used to find the shortest path through a

graph.

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

Dijkstra’s shortest path algorithm

Given a graph and a source vertex in the graph, find shortest paths from source to all vertices

in the given graph.

Algorithm

1. Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest

path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set

is empty.

2. Assign a distance value to all vertices in the input graph. Initialize all distance values as

INFINITE. Assign distance value as 0 for the source vertex so that it is picked first.

3. While sptSet doesn’t include all vertices

a) Pick a vertex u which is not there in sptSet and has minimum distance value.

b) Include u to sptSet.

c) Update distance value of all adjacent vertices of u.

To update the distance values, iterate through all adjacent vertices. For every adjacent

vertex v, if sum of distance value of u (from source) and weight of edge u-v, is less than

the distance value of v, then update the distance value of v.

Example:

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

[Shankar Bhandari][IOE][Sagarmatha Engineering College]

